http://iet.metastore.ingenta.com
1887

Energy-efficient LDPC codec design using cost-effective early termination scheme

Energy-efficient LDPC codec design using cost-effective early termination scheme

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, the authors propose an energy-efficient codec design using a rate-0.91 systematic quasi-cyclic-low-density parity-check (QC-LDPC) code. A cost-effective early termination (ET) scheme is presented for efficiently terminating the decoding iterations and maintaining desirable correcting performance. Compared with no ET scheme, the cost-effective ET scheme achieves 54.6% energy reduction with 1.7% area overhead. Finally, the proposed QC-LDPC codec employing the cost-effective ET scheme is implemented in a prototyping chip of 9.86 mm2 core area using the TSMC 90 nm CMOS technology. Compared with the other decoder chips, the prototyping codec operating at 278 MHz achieves the best decoding energy efficiency of 156 pJ/bit with a high decoding throughput of 4.3 Gbps. The prototyping codec also achieves a high encoding throughput of 4.4 Gbps.

References

    1. 1)
      • 1. Kim, T., Kong, G., Weiya, X., et al: ‘Cell-to-cell interference compensation schemes using reduced symbol pattern of interfering cells for MLC NAND flash memory’, IEEE Trans. Magn., 2013, 49, (6), pp. 25692573.
    2. 2)
      • 2. Gallager, R.: ‘Low-density parity-check codes’, IRE Trans. Inf. Theory, 1962, 7, pp. 2128.
    3. 3)
      • 3. Bose, R.C., Ray-Chaudhuri, D.K.: ‘On a class of error correcting binary group codes’, Inf. Control, 1960, 3, (1), pp. 6879.
    4. 4)
      • 4. Hocquenghem, A.: ‘Codes correcterus d'erreurs’, Chiffres, 1959, 2, pp. 117156.
    5. 5)
      • 5. Wang, J., Courtade, T., Shankar, H., et al: ‘Soft information for LDPC decoding in flash: mutual-information optimized quantization’. Proc. IEEE Global Telecomm. Conf., Kathmandu, Nepal, 2011, pp. 16.
    6. 6)
      • 6. Tanakamaru, S., Yanagihara, Y., Takeuchi, K.: ‘Error-prediction LDPC and error-recovery schemes for highly reliable solid-state drives (SSDs)’, IEEE J. Solid-State Circuits, 2013, 48, (11), pp. 29202933.
    7. 7)
      • 7. Li, M.-R., Chou, H.-C., Ueng, Y.-L., et al: ‘A low-complexity LDPC decoder for NAND flash applications’. Proc. IEEE Int. Symp. Circuits and Systems, Melbourne, Australia, 2014, pp. 213216.
    8. 8)
      • 8. Ho, K.-C., Fang, P.-C., Li, H.-P., et al: ‘A 45 nm 6 b/cell charge-trapping flash memory using LDPC-based ECC and drift-immune soft-sensing engine’. Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2013, pp. 222223.
    9. 9)
      • 9. Kim, J., Sung, W.: ‘Rate-0.96 LDPC decoding VLSI for soft-decision error correction of NAND flash memory’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2014, 22, (5), pp. 10041015.
    10. 10)
      • 10. Ho, K.-C., Chen, C.-L., Chang, H.-C.: ‘A 520 k (18900, 17010) array dispersion LDPC decoder architectures for NAND flash memory’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (4), pp. 12931304.
    11. 11)
      • 11. Lin, Y.-M., Li, H.-T., Chung, M.-H., et al: ‘Byte-reconfigurable LDPC codec design with application to high-performance ECC of NAND flash memory systems’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (7), pp. 17941804.
    12. 12)
      • 12. Shih, X.-Y., Zhan, C.-Z., Lin, C.-H., et al: ‘An 8.29 mm2 52 mW multi-mode LDPC decoder design for mobile WiMAX system in 0.13 µm CMOS process’, IEEE J. Solid-State Circuits, 2008, 43, (3), pp. 672683.
    13. 13)
      • 13. Chen, Z., Zhao, X., Peng, X., et al: ‘An early stopping criterion for decoding LDPC codes in WiMAX and WiFi standards’. Proc. IEEE Int. Symp. Circuits and Systems, Paris, France, 2010, pp. 473476.
    14. 14)
      • 14. Hocevar, D.E.: ‘A reduced complexity decoder architecture via layered decoding of LDPC codes’. Proc. IEEE Workshop on Signal Processing Systems, Austin, TX, USA, 2004, pp. 107112.
    15. 15)
      • 15. Lin, C.-H., Huang, T.-H., Chen, C.-C., et al: ‘Efficient layer stopping technique for layered LDPC decoding’, Electron. Lett., 2013, 49, (16), pp. 994996.
    16. 16)
      • 16. Lin, C.-H., Huang, T.-H., Lin, S.-Y., et al: ‘Design and implementation of operation-reduced LDPC decoder based on a check node stopping scheme’, J. Circuits Syst. Comput., 2017, 26, (2), pp. 119.
    17. 17)
      • 17. Wu, Y.-S., Lin, C.-H., Lin, S.-Y.: ‘Ultra-low complexity early termination scheme for layered LDPC decoding’. Proc. IEEE Global Conf. Consumer Electronics, Tokyo, Japan, 2014, pp. 711712.
    18. 18)
      • 18. Fossorier, M.P.C.: ‘Quasi-cyclic low-density parity-check codes from circulant permutation matrices’, IEEE Trans. Inf. Theory, 2004, 50, (8), pp. 17881793.
    19. 19)
      • 19. Mansour, M.M., Shanbhag, N.R.: ‘High-throughput LDPC decoders’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2003, 11, (6), pp. 976996.
    20. 20)
      • 20. Chen, J., Fossorier, M.: ‘Density evolution for two improved BP-based decoding algorithms of LDPC codes’, IEEE Commun. Lett., 2002, 6, (5), pp. 208210.
    21. 21)
      • 21. Richardson, T.J., Urbanke, R.L.: ‘Efficient encoding of low-density parity-check codes’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 638656.
    22. 22)
      • 22. Xiang, B., Shen, R., Pan, A., et al: ‘An area efficient and low-power multirate decoder for quasi-cyclic low-density parity-check codes’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2010, 18, (10), pp. 14471459.
    23. 23)
      • 23. Chen, C.-H., Tang, W., Zhang, Z.: ‘A 2.4 mm2 130 mW MMSE-nonbinary-LDPC iterative detector-decoder for 4 × 4 256-QAM MIMO in 65 nm CMOS’. Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2015, pp. 13.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2018.5074
Loading

Related content

content/journals/10.1049/iet-cdt.2018.5074
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address