High performance and predictable memory controller for multicore mixed-criticality real-time systems

High performance and predictable memory controller for multicore mixed-criticality real-time systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multicore processors are widely used in today's real-time embedded systems to satisfy the performance and predictability requirements as well as reduce cost. A vast majority of multicore embedded systems are running several tasks with mixed-criticality, in which the non-functional requirements of the tasks are different or even conflicting. A major challenge in mixed-criticality systems is to maximise the efficiency of shared resources while satisfying the criticality requirements. Shared memory is a key component that should be well managed and memory controller plays the main role in this case. Several memory controllers have been introduced in the literature for multicore processors. In this article, the authors performed a deep investigation on three state-of-the-art memory controllers using gem5 full-system simulator and Xilinx ISE Design Suite, and compared them in terms of predictability and performance. Then, the authors proposed a memory controller that provides the same predictability as the most predictable existing controller while improving the performance by 12.3%.


    1. 1)
      • 1. Makrani, H.M., Monazzah, A.M.H., Farbeh, H., et al: ‘Evaluation of software-based fault-tolerant techniques on embedded OS's components’. Proc Int. Conf. Depend., Lisbon, Portugal, November 2014, pp. 5157.
    2. 2)
      • 2. Farbeh, H., Fazeli, M., Khosravi, F., et al: ‘Memory mapped spm: protecting instruction scratchpad memory in embedded systems against soft errors’. Proc. Euro. Depend. Comput. Conf., Sibiu, Romania, May 2012, pp. 218226.
    3. 3)
      • 3. Sayadi, H., Farbeh, H., Monazzah, A.M.H., et al: ‘A data recomputation approach for reliability improvement of scratchpad memory in embedded systems’. Proc. Int. Symp. Defect and Fault Tolerance VLSI and Nanotechnology System, Amsterdam, Netherlands, October 2014, pp. 228233.
    4. 4)
      • 4. Biondi, A., Marinoni, M., Buttazzo, G., et al: ‘Challenges in virtualizing safety-critical cyber physical systems’. Proc. Int. Conf. Embedded World, Nurnberg, Germany, February 2018, pp. 15.
    5. 5)
      • 5. Leupers, R., Aguilar, M.A., Castrillon, J.: ‘Software compilation techniques for embedded heterogeneous multi-core systems’, in Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., et al (Eds.): ‘Handbook of signal processing systems’ (Springer, Basel, Switzerland, 2018, 3rd edn.), pp. 10211062.
    6. 6)
      • 6. Macariu, G., Vladimir, C.: ‘Enabling parallelism and resource sharing in multi-core component-based systems’. Proc. Int. Symp. IEEE Object/Component/Service/-Oriented Real-Time Distributed Computing, Newport Beach, Canada, March 2011, pp. 269277.
    7. 7)
      • 7. Paolieri, M., Quiñones, E., Cazorla, F.J., et al: ‘Hardware support for WCET analysis of hard real-time multicore systems’, ACM SIGARCH Comput. Archit. News, 2009, 37, (3), pp. 5768.
    8. 8)
      • 8. Paolieri, M., Quiñones, E., Cazorla, J., et al: ‘An analyzable memory controller for hard real-time CMPs’, IEEE Embedded Sys. Lett., 2009, 1, (4), pp. 8690.
    9. 9)
      • 9. Reineke, J., Liu, I., Patel, H.D., et al: ‘Pret dram controller: bank privatization for predictability and temporal isolation’. Proc. Int. Conf. IEEE/ACM/IFIP Hardware/software Codesign and System Synthesis, New York, USA, October 2011, pp. 99108.
    10. 10)
      • 10. Ecco, L., Tobuschat, S., Saidi, S., et al: ‘A mixed critical memory controller using bank privatization and fixed priority scheduling’. Proc. Int. Conf. Embedded and Real-Time Computing Systems and Applications, Chongqing, China, August 2014, pp. 110.
    11. 11)
      • 11. Goossens, S., Kuijsten, J., Akesson, B., et al: ‘A reconfigurable real-time sdram controller for mixed time-criticality systems’. Proc. Int. Conf. IEEE/ACM/IFIP Hardware/Software Codesign and System Synthesis, Montreal, Canada, October 2013, pp. 110.
    12. 12)
      • 12. Akesson, B., Goossens, K., Ringhofer, M.: ‘Predator: a predictable SDRAM memory controllers’. Proc. Int. Conf. IEEE/ACM/IFIP Conf. on Hardware/Software Codesign and System Synthesis, Salzburg, Austria, September 2007, pp. 251256.
    13. 13)
      • 13. Wu, Z., Krish, Y., Pellizzoni, R.: ‘Worst case analysis of dram latency in multi-requestor systems’. Proc. Int. Conf. 34th IEEE Conf. on Real-Time Systems Symp., Vancouver, Canada, December 2013, pp. 372383.
    14. 14)
      • 14. Paolieri, M., Quinones, E., Cazorla, F.J.: ‘Timing effects of DDR memory systems in hard real-time multicore architecture: issues and solutions’, ACM Trans. Embedded Comput. Syst., 2013, 12, (1), pp. 164.
    15. 15)
      • 15. Hassan, M., Patel, H.: ‘Criticality- and requirement-aware bus arbitration for multi-core mixed criticality systems’. Proc. Int. Conf. IEEE Real-Time and Embedded Technology and Applications Symp., Vienna, Austria, April 2016, pp. 111.
    16. 16)
      • 16. Jalle, J., Quinones, E., Abella, J., et al: ‘A dual-criticality memory controller (DCmc): proposal and evaluation of a space case study’. Proc. Int. Conf. Real-Time Systems Symp. (RTSS'14), Rome, Italy, December 2014, pp. 207217.
    17. 17)
      • 17. Giannopoulou, G., Stoimenov, N., Huang, P., et al: ‘Scheduling of mixed-criticality applications on resource-sharing multicore systems’. Proc. Int. Conf. IEEE Embedded Software, Montreal, Canada, September 2013, pp. 115.
    18. 18)
      • 18. Xie, G., Zeng, G., Li, Z., et al: ‘Adaptive dynamic scheduling on multi-functional mixed criticality automotive cyber-physical systems’, IEEE Trans. Veh. Technol., 2017, 66, (8), pp. 66766692.
    19. 19)
      • 19. Cilku, B., Crespo, A., Puschner, P., et al: ‘A TDMA-based arbitration scheme for mixed-criticality multicore platforms’. Proc. Int. Conf. 3rd Int. Conf. on Event-Based Control, Communication and Signal Processing (EBCCSP), Krakow, Poland, June 2015, pp. 16.
    20. 20)
      • 20. Schoeberl, M., Pezzarossa, L., Sparsø, J.: ‘A multicore processor for time-critical applications’, IEEE Des. Test, 2018, 35, (2), pp. 3847.
    21. 21)
      • 21. Schoeberi, M.: ‘Design of a time-predictable multicore processor: the T-CREST project’. Proc. Int. Conf. Design, Automation & Test in Europe Conf. & Exhibition (DATE), Dresden, Germany, March 2018, pp. 909912.
    22. 22)
      • 22. Maroun, E.J., Hansen, H.E., Kristensen, A.T., et al: ‘Time-predictable synchronization support with a shared scratchpad memory’, Int. J. Microprocess. Microsyst., 2019, 64, (1), pp. 3442.
    23. 23)
      • 23. Binkert, N., Beckmann, B., Black, G., et al: ‘The gem5 simulator’, ACM SIGARCH Comput. Archit. News, 2011, 39, (2), pp. 17.
    24. 24)
      • 24., accessed 1 July 2014.
    25. 25)
      • 25. Jantz, M., Strickland, C., Kumar, K., et al: ‘A framework for application guidance in virtual memory systems’. Proc. Int. Conf. ACM SIGPLAN/SIGOPS Virtual Execution Environments, New York, USA, October 2013, pp. 155166.
    26. 26)
      • 26. Yun, H., Mancuso, R., Wu, Z.P., et al: ‘PALLOC: DRAM bank-aware memory allocator for performance isolation on multicore platforms’. Proc. Int. Conf. IEEE Real-Time and Embedded Technology and Applications Symp., Berlin, Germany, April 2014, pp. 155166.
    27. 27)
      • 27. Sha, L.: ‘Real-time virtual machines for avionics software porting and development’. Proc. Int. Conf. Real-Time and Embedded Computing Systems and Applications, Tainan, Taiwan, February 2003, pp. 123135.
    28. 28)
      • 28. Guthaus, M.R., Ringenberg, J.S., Ernst, D., et al: ‘Mibench: a free, commercially representative embedded benchmark suite’. IEEE Annual Workshop on Workload Characterization, Austin, TX, USA, December 2001, pp. 314.

Related content

This is a required field
Please enter a valid email address