http://iet.metastore.ingenta.com
1887

Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes

Design of reliable storage and compute systems with lightweight group testing based non-binary error correction codes

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose a new group testing based (GTB) error control codes (ECCs) approach for improving the reliability of memory structures in computing systems. Compared with conventional single- and double-bit error correcting codes, the GTB codes provide higher reliability at the multi-byte error correction granularity. The proposed codes are cost-efficient in their encoding and decoding procedures. Instead of requiring multiplication or inversion over Galois finite field like most multi-byte ECC schemes, the proposed technique only involves bitwise XOR operations, therefore, significantly reducing the computation complexity and latency. For instance, to correct m errors in a Q-ary codeword of length N, where , the compute complexity is mere . The GTB codes trade redundancy for encoding and decoding simplicity, and are able to achieve better code rate than other ECCs of the same trade-off. The proposed GTB codes lend themselves well to designs with high reliability and low computation complexity requirements, such as storage systems with strong fault tolerance, or compute systems with straggler tolerance, and so on.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2018.5008
Loading

Related content

content/journals/10.1049/iet-cdt.2018.5008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address