Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free High-throughput Dickson basis multiplier with a trinomial for lightweight cryptosystems

In this study, the authors propose a high-throughput systolic Dickson basis multiplier over GF(2 m ). Use of the Dickson basis seems promising when no Gaussian normal basis exists for the field, and it can easily carry out both squaring and multiplication operations. Many squaring operations and multiplications are needed when computing the digital signatures of elliptic curve digital signature algorithm. The proposed systolic Dickson basis multiplier can concurrently compute a great number of multiplications with a high-throughput rate, thereby substantially increasing the speed of computation for digital signatures.

References

    1. 1)
      • 9. Huang, W.-T., Chang, C. H., Chiou, C. W., et al: ‘Non-XOR approach for low-cost bit-parallel polynomial basis multiplier over GF(2m)’, IET Inf. Sec., 2011, 5, (3), pp. 152162.
    2. 2)
      • 8. Itoh, T., Tsujii, S.: ‘Structure of parallel multipliers for a class of fields GF(2m)’, Inf. Comput., 1989, 83, pp. 2140.
    3. 3)
      • 12. Chiou, C.W., Lee, C.-Y., Lin, J.-M., et al: ‘Low-latency digit-serial dual basis multiplier for lightweight cryptosystems’, IET Inf. Sec., 2017, 11, (6), pp. 301311.
    4. 4)
      • 17. Park, S.-M., Hong, D., Seo, C.: ‘Subquadratic space complexity multiplier for GF(2n) using type 4 Gaussian normal bases’, ETRI J., 2013, 35, (3), pp. 523529.
    5. 5)
      • 26. Wang, Q., Yucas, J. L.: ‘Dickson polynomials over finite fields’, Finite Fields Appl., 2012, 18, (4), pp. 814831.
    6. 6)
      • 27. Kumanduri, R., Romero, C.: ‘Number theory with computer applications’ (Prentice Hall, Upper Saddle River, NT, 1998).
    7. 7)
      • 6. Bartee, T.C., Schneider, D. J.: ‘Computation with finite fields’, Inf. Comput., 1963, 6, pp. 7998.
    8. 8)
      • 13. Massey, J. L., Omura, J. K.: ‘Computational method and apparatus for finite field arithmetic’. U.S. Patent Number 4,587,627, May 1986.
    9. 9)
      • 19. ANSI X9.62-2005: ‘Public key cryptography for the financial services industry: the elliptic curve digital signature algorithm (ECDSA)’, American National Standards Institute (ANSI), November 2005.
    10. 10)
      • 5. Koblitz, N.: ‘Elliptic curve cryptosystems’, Math. Comput., 1987, 48, pp. 203209.
    11. 11)
      • 25. Hasan, M.A., Negre, C.: ‘Low space complexity multiplication over binary fields with Dickson polynomial representation’, IEEE Trans. Comput., 2011, 60, (4), pp. 602607.
    12. 12)
      • 3. Agnew, G.B., Mullin, R.C., Onyszchuk, I.M., et al: ‘An implementation for a public-key cryptosystems’, J. Cryptol., 1991, 3, pp. 6379.
    13. 13)
      • 10. Fan, H., Hasan, M.A.: ‘A new approach to subquadratic space complexity parallel multipliers for extended binary fields’, IEEE Trans. Comput., 2007, 56, (2), pp. 224233.
    14. 14)
      • 11. Wu, H., Hasan, M. A., Blake, I. F.: ‘New low-complexity bit-parallel finite field multipliers using weakly dual bases’, IEEE Trans. Comput., 1998, 47, (11), pp. 12231234.
    15. 15)
      • 16. Fan, H., Hasan, M.A.: ‘Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases’, IEEE Trans. Comput., 2007, 56, (10), pp. 14351437.
    16. 16)
      • 14. Lee, C.-Y., Chiou, C. W.: ‘Scalable Gaussian normal basis multipliers over GF(2m) using hankel matrix-vector representation’, J. Signal Process. Syst. Signal Image Video Technol., 2012, 69, (2), pp. 197211.
    17. 17)
      • 23. Park, S.-M., Chang, K.-Y., Hong Seo, D. C.: ‘Low complexity multiplier based on Dickson basis using efficient Toeplitz matrix-vector product’, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2015, E98-A, (11), pp. 22832290.
    18. 18)
      • 15. Chiou, C. W., Sun, Y.-S., Lee, C.-M., et al: ‘Gaussian normal basis multiplier over GF(2m) using hybrid subquadratic and quadratic TMVP approach for elliptic curve cryptography’, IET Circuits Devices Syst., 2017, 11, (6), pp. 579588.
    19. 19)
      • 2. Diffie, W., Hellman, M.E.: ‘New directions in cryptography’, IEEE Trans. Inf. Theory, 1976, 22, pp. 644654.
    20. 20)
      • 22. Hasan, M.A., Negre, C.: ‘Subquadratic space complexity multiplication over binary fields with Dickson polynomial representation’. Proc. Second Int. Workshop Arithmetic of Finite Fields, 2008 (LNCS, 5130), pp. 88102.
    21. 21)
      • 1. Peterson, W.W., Weldon, E.J.Jr.: ‘Error-correcting code’ (MIT Press, Cambridge, Mass., 1972).
    22. 22)
      • 4. Miller, V.S.: ‘Use of elliptic curves in cryptography’. Proc. CRYPTO'85, 1986 (LNCS, 218), pp. 417426.
    23. 23)
      • 24. Park, S.-M., Chang, K.-Y., Hong, D., et al: ‘Efficient multiplication based on Dickson bases over any finite field’, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2016, E99-A, (11), pp. 20602074.
    24. 24)
      • 28. NanGate Standard Cell Library [Online]. Available at http://www.si2.org/openeda.si2.org/projects/nangatelib/, accessed 17 September 2017.
    25. 25)
      • 21. Mullin, R.C., Mahalanobis, A.: ‘Dickson bases and finite fields’. Technical Report, University of Waterloo, Canada, 2007.
    26. 26)
      • 7. Mastrovito, E.D.: ‘VLSI architectures for multiplication over finite field GF(2m)’ inMora, T. (ed.): ‘Applied algebra, algebraic algorithms, and error-correcting codes. Sixth Int. Conf. AAECC-6, Rome, Italy, July 1988’ (Springer-Verlag, New York, 1988), pp. 297309.
    27. 27)
      • 20. Dickson, L.E.: ‘The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group’, Ann. Math., 1883, 11, (1/6), pp. 161183.
    28. 28)
      • 18. Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., et al: ‘Optimal normal bases in GF(pn)’, Discrete Appl. Math., 1989, 22, (2), pp. 149161.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2017.0209
Loading

Related content

content/journals/10.1049/iet-cdt.2017.0209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address