Your browser does not support JavaScript!

access icon free Role of circuit representation in evolutionary design of energy-efficient approximate circuits

Circuit approximation has been introduced in recent years as a viable method for constructing energy-efficient electronic systems. An open problem is how to effectively obtain approximate circuits showing good compromises between key circuit parameters – the error, power consumption, area and delay. The use of evolutionary algorithms in the task of circuit approximation has led to promising results. Unfortunately, only relatively small circuit instances have been tackled because of the scalability problems of the evolutionary design method. This study demonstrates how to push the limits of the evolutionary design by choosing a more suitable representation on the one hand and a more efficient fitness function on the other hand. In particular, the authors show that employing full adders as building blocks leads to more efficient approximate circuits. The authors focused on the approximation of key arithmetic circuits such as adders and multipliers. While the evolutionary design of adders represents a rather easy benchmark problem, the design of multipliers is known to be one of the hardest problems. The authors evolved a comprehensive library of energy-efficient 12-bit multipliers with a guaranteed worst-case error. The library consists of 65 Pareto dominant solutions considering power, delay, area and error as design objectives.


    1. 1)
      • 23. Kulkarni, P., Gupta, P., Ercegovac, M.: ‘Trading accuracy for power with an underdesigned multiplier architecture’. 2011 24th Int. Conf. on Very-Large-Scale Integration (VLSI) Design, Chennai, India, 2011, pp. 346351.
    2. 2)
      • 5. Venkataramani, S., Roy, K., Raghunathan, A.: ‘Substitute-and-simplify: a unified design paradigm for approximate and quality configurable circuits’. Proc. of DATE'13 (European Design Automation Association), Grenoble, France, 2013, pp. 13671372.
    3. 3)
      • 3. Xu, Q., Mytkowicz, T., Kim, N.S.: ‘Approximate computing: a survey’, IEEE Des. Test, 2016, 33, (1), pp. 822.
    4. 4)
      • 16. Wiltgen, A., Escobar, K., Reis, A., et al: ‘Power consumption analysis in static CMOS gates’. 2013 26th Symp. on Integrated Circuits and Systems Design (SBCCI), Curitiba, Brazil, 2013, pp. 16.
    5. 5)
      • 21. Hrbacek, R.: ‘Parallel multi-objective evolutionary design of approximate circuits’. GECCO ‘15 Proc. of the 2015 Conf. on Genetic and Evolutionary Computation, Madrid, Spain, 2015, pp. 687694.
    6. 6)
      • 8. Vasicek, Z., Sekanina, L.: ‘Evolutionary approach to approximate digital circuits design’, IEEE Trans. Evol. Comput., 2015, 19, (3), pp. 432444.
    7. 7)
      • 1. Mittal, S.: ‘A survey of techniques for approximate computing’, ACM Comput. Surv., 2016, 48, (4), pp. 62:162:33.
    8. 8)
      • 14. Clegg, J., Walker, J.A., Miller, J.F.: ‘A new crossover technique for Cartesian genetic programming’. Proc. of The Genetic and Evolutionary Computation Conf. (GECCO), London, 2007.
    9. 9)
      • 13. Miller, J.F., Thomson, P., Fogarty, T.: ‘Designing electronic circuits using evolutionary algorithms. Arithmetic circuits: a case study’ (Wiley, 1998), pp. 105131.
    10. 10)
      • 15. Slany, K., Sekanina, L.: ‘Fitness landscape analysis and image filter evolution using functional-level CGP’. Proc. of European Conf. on Genetic Programming, Valencia, Spain, 2007 (LNCS, 4445), pp. 311320.
    11. 11)
      • 2. Chippa, V.K., Chakradhar, S.T., Roy, K., et al: ‘Analysis and characterization of inherent application resilience for approximate computing’. The 50th Annual Design Automation Conf., (DAC'13, 2013), Austin, TX, USA, 2013, pp. 19.
    12. 12)
      • 19. Jiang, H., Liu, C., Maheshwari, N., et al: ‘A comparative evaluation of approximate multipliers’. Int. Symp. Nanoscale Architectures, Beijing, China, 2016, pp. 191196.
    13. 13)
      • 18. Jiang, H., Han, J., Lombardi, F.: ‘A comparative review and evaluation of approximate adders’. Proc. of GLVLSI'15, Pittsburgh, PA, USA, 2015, pp. 343348.
    14. 14)
      • 12. Weste, N.H., Harris, D.: ‘CMOS VLSI design: a circuits and systems perspective’ (Addison-Wesley, Boston, USA, 2005, 3rd edn.).
    15. 15)
      • 11. Miller, J.F.: ‘Cartesian genetic programming’ (Springer-Verlag, New York, NY, USA, 2011).
    16. 16)
      • 9. Mrazek, V., Sarwar, S.S., Sekanina, L., et al: ‘Design of power-efficient approximate multipliers for approximate artificial neural networks’. Proc. of ICCAD'16, Austin, TX, USA, 2016, pp. 81:181:7.
    17. 17)
      • 6. Nepal, K., Li, Y., Bahar, R.I., et al: ‘Abacus: a technique for automated behavioral synthesis of approximate computing circuits’. Proc. of the Conf. on Design, Automation and Test in Europe (DATE ’14), Dresden, Germany, 2014, pp. 16.
    18. 18)
      • 22. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (Wiley, New York, NY, USA, 2001).
    19. 19)
      • 10. Hrbacek, R., Mrazek, V., Vasicek, Z.: ‘Automatic design of approximate circuits by means of multi-objective evolutionary algorithms’. Proc. of DTIS'16, Istanbul, Turkey, 2016, pp. 239244.
    20. 20)
      • 4. Venkataramani, S., Sabne, A., Kozhikkottu, K., et al: ‘SALSA: systematic logic synthesis of approximate circuits’. Proc. of DAC'12, 2012, pp. 796801.
    21. 21)
      • 17. Monteiro, J., Devadas, S., Ghosh, A., et al: ‘Estimation of average switching activity in combinational logic circuits using symbolic simulation’, IEEE Trans. Computer-Aided Des. Integr. Circuits Syst., 1997, 16, (1), pp. 121127.
    22. 22)
      • 7. Sekanina, L., Vasicek, Z.: ‘Approximate circuit design by means of evolvable hardware’. IEEE Int. Conf. on Evolvable Systems (ICES), Singapore, 2013, pp. 2128.
    23. 23)
      • 20. Vasicek, Z., Slany, K.: ‘Efficient phenotype evaluation in cartesian genetic programming’. Proc. of the 15th European Conf. on Genetic Programming, Malaga, Spain, 2012 (LNCS, 7244), pp. 266278.

Related content

This is a required field
Please enter a valid email address