Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures

Design and synthesis of improved reversible circuits using AIG- and MIG-based graph data structures

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Reversible logic synthesis is one of the best suited ways which act as the intermediate step for synthesising Boolean functions on quantum technologies. For a given Boolean function, there are multiple possible intermediate representations (IRs), based on functional abstraction, e.g. truth table, decision diagrams or circuit abstraction, e.g. binary decision diagram (BDD), and-inverter graph (AIG) and majority inverter graph (MIG). These IRs play an important role in building circuits as the choice of an IR directly impacts on cost parameters of the design. In the authors’ work, they are analysing the effects of different graph-based IRs (BDD, AIG and MIG) and their usability in making efficient circuit realisations. Although applications of BDDs as an IR to represent large functions has already been studied, here they are demonstrating a synthesis scheme by taking AIG and MIG as IRs and making a comprehensive comparative analysis over all these three graph-based IRs. In experimental evaluation, it is being observed that for small functions BDD gives more compact circuits than the other two IRs but when the input size increases, then MIG as IR makes substantial improvements in cost parameters as compared with BDD by reducing quantum cost by 39% on an average. Along with the experimental results, a detailed analysis over the different IRs is also included to find their easiness in designing circuits.

Related content

This is a required field
Please enter a valid email address