Reconstruction of a functional test sequence for increased fault coverage

Reconstruction of a functional test sequence for increased fault coverage

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Simulation-based sequential test generation procedures address the high computational complexity of sequential test generation by replacing the deterministic branch-and-bound process with lower-complexity processes. These processes introduce new primary input patterns into a functional test sequence in order to increase its fault coverage. This study observes that, even without introducing new primary input patterns, it is possible to increase the fault coverage of a functional test sequence by applying the same primary input patterns in different orders. This is referred to as reconstruction of the sequence. It provides a new low-complexity option for increasing the fault coverage, and thus addressing the high computational complexity of sequential test generation. This study describes a reconstruction procedure that is based on repeating short subsequences of primary input patterns from the sequence. Experimental results demonstrate the effectiveness of the reconstruction procedure in increasing the fault coverage as part of a simulation-based sequential test generation procedure.

Related content

This is a required field
Please enter a valid email address