http://iet.metastore.ingenta.com
1887

access icon free High-performance elliptic curve cryptography processor over NIST prime fields

Loading full text...

Full text loading...

/deliver/fulltext/iet-cdt/11/1/IET-CDT.2016.0033.html;jsessionid=otb1lbxvxtrc.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cdt.2016.0033&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Loi, K.C.C., Ko, S.B.: ‘Scalable elliptic curve cryptosystem FPGA processor for NIST prime curves’, IEEE Trans. VLSI Syst., 2015, 23, (11), pp. 27532756.
    2. 2)
      • 2. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: ‘Petrel: Power and timing attack resistant elliptic curve scalar multiplier based on programmable GF(p) arithmetic unit’, IEEE Trans. Circuits Syst. I, 2011, 58, (8), pp. 17981812.
    3. 3)
      • 3. Koblitz, N.: ‘Elliptic curve cryptosystems’, Math. Comput., 1987, 48, pp. 203209.
    4. 4)
      • 4. Miller, V.S.: ‘Use of elliptic curves in cryptography’. Proc. CRYPTO 1985, 1986, pp. 417426.
    5. 5)
      • 5. Rivest, R.L., Shamir, A., Adleman, L.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, (2), pp. 120126.
    6. 6)
      • 6. Marzouqi, H., Al-Qutayri, M., Salah, K.: ‘An FPGA implementation of NIST 256 prime field ECC processor’. Proc. IEEE ICECS, December 2013, pp. 493496.
    7. 7)
      • 7. McIvor, C., McLoone, M., McCanny, J.: ‘Hardware elliptic curve cryptographic processor over GF(p)’, IEEE Trans. Circuits Syst. I, 2006, 53, (9), pp. 19461957.
    8. 8)
      • 8. National Institute of Standards and Technology, Digital Signature Standard, FIPS Publication 186-2’ (NIST, Gaithersburg, MD, USA, 2000).
    9. 9)
      • 9. ‘SEC 2: Recommended elliptic curve domain parameters, standards for efficient cryptography, Certicom Research’, 2000.
    10. 10)
      • 10. IEEE standard specifications for public-key cryptography’, IEEE Std 1363-2000, August 2000, pp. 1228.
    11. 11)
      • 11. Lee, J.-W., Chung, S.-C., Chang, H.-C., et al: ‘Efficient power-analysis-resistant dual-field elliptic curve cryptographic processor using heterogeneous dual-processing-element architecture’, IEEE Trans. VLSI Syst., 2014, 22, (1), pp. 4961.
    12. 12)
      • 12. Vliegen, J., Mentens, N., Genoe, J., et al: ‘A compact FPGA-based architecture for elliptic curve cryptography over prime fields’. Proc. IEEE Int. Conf. ASAP, July 2010, pp. 313316.
    13. 13)
      • 13. Ananyi, K., Alrimeih, H., Rakhmatov, D.: ‘Flexible hardware processor for elliptic curve cryptography over NIST prime fields’, IEEE Trans. VLSI Syst., 2009, 17, (8), pp. 10991112.
    14. 14)
      • 14. Ghosh, S., Alam, M., Chowdhury, D.R., et al: ‘Parallel crypto-devices for GF(p) elliptic curve multiplication resistant against side channel attacks’, Comput. Electr. Eng., 2009, 35, (2), pp. 329338.
    15. 15)
      • 15. Lai, J.Y., Huang, C.T.: ‘A highly efficient cipher processor for dual-field elliptic curve cryptography’, IEEE Trans. Circuits Syst. II, 2009, 56, (5), pp. 394398.
    16. 16)
      • 16. Ahmadi, H., Afzali-Kusha, A.: ‘Low-power low-energy prime-field ECC processor based on montgomery modular inverse algorithm’. Proc. Euromicro Conf. DSD, August 2009, pp. 817822.
    17. 17)
      • 17. Fan, J., Sakiyama, K., Verbauwhede, I.: ‘Elliptic curve cryptography on embedded multicore systems’, Des. Autom. Embed. Syst., 2008, 12, (3), pp. 231242.
    18. 18)
      • 18. Mentens, N., Sakiyama, K., Batina, L., et al: ‘A side-channel attack resistant programmable PKC coprocessor for embedded applications’. Proc. Int. Conf. SAMOS, July 2007, pp. 194200.
    19. 19)
      • 19. Sakiyama, K., Mentens, N., Batina, L., et al: ‘Reconfigurable modular arithmetic logic unit for high-performance public-key cryptosystems’ (Springer Berlin Heidelberg, 2006), pp. 347357.
    20. 20)
      • 20. Hankerson, D., Menezes, A.J., Vanstone, S.: ‘Guide to elliptic curve cryptography’ (Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003).
    21. 21)
      • 21. Longa, P., Miri, A.: ‘Fast and flexible elliptic curve point arithmetic over prime fields’, IEEE Trans. Comput., 2008, 57, (3), pp. 289302.
    22. 22)
      • 22. Montgomery, P.L.: ‘Modular multiplication without trial division’, Math. Comput., 1985, 44, (170), pp. 519521.
    23. 23)
      • 23. Byrne, A., Meloni, N., Crowe, F., et al: ‘SPA resistant elliptic curve cryptosystem using addition chains’. Proc. Int. Conf. ITNG, April 2007, pp. 9951000.
    24. 24)
      • 24. Daly, A., Marnane, W., Kerins, T., et al: ‘An FPGA implementation of a GF(p) ALU for encryption processors’, Microproces. Microsyst., 2004, 28, (56), pp. 253260, Special Issue on FPGAs: Applications and Designs.
    25. 25)
      • 25. Hossain, M.S., Kong, Y.: ‘FPGA-based efficient modular multiplication for elliptic curve cryptography’. Proc. ITNAC, November 2015, pp. 191195.
    26. 26)
      • 26. Bunimov, V., Schimmler, M.: ‘Area and time efficient modular multiplication of large integers’. Proc. IEEE Int. Conf. ASAP, June 2003, pp. 400409.
    27. 27)
      • 27. Hossain, M.S., Kong, Y.: ‘High-performance FPGA implementation of modular inversion over F256 for elliptic curve cryptography’. Proc. IEEE Int. Conf. DSDIS, December 2015, pp. 169174.
    28. 28)
      • 28. Cheng-hua, D., Yi, L., Yong-tao, C.: ‘A 3-stage pipelined large integer modular arithmetic unit for ECC’. Proc. Int. Symp. IEEC, May 2009, pp. 519523.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2016.0033
Loading

Related content

content/journals/10.1049/iet-cdt.2016.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address