http://iet.metastore.ingenta.com
1887

Inexact-aware architecture design for ultra-low power bio-signal analysis

Inexact-aware architecture design for ultra-low power bio-signal analysis

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study introduces an inexact, but ultra-low power, computing architecture devoted to the embedded analysis of bio-signals. The platform operates at extremely low voltage supply levels to minimise energy consumption. In this scenario, the reliability of static RAM (SRAM) memories cannot be guaranteed when using conventional 6-transistor implementations. While error correction codes and dedicated SRAM implementations can ensure correct operations in this near-threshold regime, they incur in significant area and energy overheads, and should therefore be employed judiciously. Herein, the authors propose a novel scheme to design inexact computing architectures that selectively protects memory regions based on their significance, i.e. their impact on the end-to-end quality of service, as dictated by the bio-signal application characteristics. The authors illustrate their scheme on an industrial benchmark application performing the power spectrum analysis of electrocardiograms. Experimental evidence showcases that a significance-based memory protection approach leads to a small degradation in the output quality with respect to an exact implementation, while resulting in substantial energy gains, both in the memory and the processing subsystem.

References

    1. 1)
      • 1. MEP Heart Group: ‘Cardiovascular diseases facts and figures’. Available at http://www.mepheartgroup.eu/index.php/facts-a-figures.
    2. 2)
    3. 3)
      • 3. Braojos, R., Dogan, A., Beretta, I., et al: ‘Hardware/software approach for code synchronization in low-power multi-core sensor nodes’, Design, Automation and Test in Europe Conf. and Exhibition (DATE), 2014.
    4. 4)
      • 4. Braojos, R., Giovanni, A., Atienza, D.: ‘A methodology for embedded classification of heartbeats using random projections’. Design, Automation and Test in Europe Conf. and Exhibition (DATE), IEEE, 2013, 2013, pp. 899904.
    5. 5)
      • 5. Ganapathy, S., Karakonstantis, G., Teman, A., et al: ‘Mitigating the impact of faults in unreliable memories for error-resilient applications’. Proc. Design Automation Conf., 2015.
    6. 6)
      • 6. Du, Z., Lingamneni, A., Chen, Y., et al: ‘Leveraging the error resilience of machine-learning applications for designing highly energy efficient accelerators’. 19th Asia and South Pacific Design Automation Conf. (ASP-DAC), 2014, pp. 201206.
    7. 7)
      • 7. Mamaghanian, H., Khaled, N., Atienza, D., et al: ‘Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor bodes’. IEEE Trans. Biomed. Eng., 2011, vol. 58, no. 9, pp. 24562466.
    8. 8)
      • 8. Bortolotti, D., Bartolini, A., Weis, C., et al: ‘Hybrid memory architecture for voltage scaling in ultra-low power multi-core biomedical processors’. Design, Automation and Test in Europe Conf. and Exhibition (DATE), 2014, 2014, pp. 16.
    9. 9)
      • 9. Massé, F., Van Bussel, M., Serteyn, A., et al: ‘Miniaturized wireless ECG monitor for real-time detection of epileptic seizures’, ACM Trans. Embedded Comput. Syst. (TECS), 2013, 12, (4), p. 102.
    10. 10)
      • 10. Milosevic, J., Dittrich, A., Ferrante, A., et al: ‘Risk assessment of atrial fibrillation: a failure prediction approach’. Computing in Cardiology Conf.(CinC), 2014, 2014, pp. 801804.
    11. 11)
      • 11. Sörnmo, L., Laguna, P.: ‘Bioelectrical signal processing in cardiac and neurological applications’ (Academic Press, Burlington, USA, 2005).
    12. 12)
      • 12. Chou, C.C., Tseng, S.Y., Chua, E., et al: ‘Advanced ECG processor with HRV analysis for real-time portable health monitoring’. Consumer Electronics- Berlin (ICCE-Berlin), September 2011, pp. 172175.
    13. 13)
    14. 14)
      • 14. Bortolotti, D., Mamaghanian, H., Bartolini, A., et al: ‘Approximate compressed sensing: ultra-low power biosignal processing via aggressive voltage scaling on a hybrid memory multi-core processor’. Proc. of 2014 IEEE Int. Symp. on Low Power Electronics and Design (ISLPED 2014), EPFL-CONF-200128, IEEE/ACM Press, 2014, vol. 1, no. pp. 4045.
    15. 15)
    16. 16)
      • 16. Di Carlo, S., Savino, A., Scionti, A., et al: ‘Influence of parasitic capacitance variations on 65 nm and 32 nm predictive technology model SRAM core-cells’. IEEE 17th Asian Test Symp. (ATS), November, 2008.
    17. 17)
    18. 18)
      • 18. Basu, S.S., Garcia del Valle, P., Ansaloni, G., et al: ‘Heterogeneous error-resilient scheme for spectral analysis in ultra-low power wearable electrocardiogram devices’. IEEE Annual Symp. on VLSI, 2015.
    19. 19)
      • 19. Wang, A., Chandrakasan, A.: ‘A 180 mV FFT processor using subthreshold circuit techniques’. Solid-State Circuits Conf., 2004, vol. 1, pp. 292529.
    20. 20)
      • 20. Ashouei, M., Hulzink, J., Konijnenburg, M., et al: ‘A voltage-scalable biomedical signal processor running ECG using 13pJ/cycle at 1 MHz and 0.4 V’. 2011 IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers (ISSCC), 2011, pp. 332334.
    21. 21)
      • 21. Muralimanohar, N., Balasubramonian, R., Jouppi, N.P.: ‘CACTI 6.0: A tool to model large caches’. (HP Laboratories, Chicago, USA, 2009), pp. 2231.
    22. 22)
    23. 23)
    24. 24)
      • 24. Karakonstantis, G., Sankaranarayanan, A., Sabry, M.M., et al: ‘A quality-scalable and energy-efficient approach for spectral analysis of heart rate variability’. Design, Automation and Test in Europe Conf. and Exhibition (DATE), 2014, 2014, pp. 16.
    25. 25)
      • 25. Karakonstantis, G., Sankaranarayanan, A., Burg, A.: ‘Low complexity spectral analysis of heart-rate-variability through a wavelet based FFT’. Computing in Cardiology Conf. (CinC), 2012, September, 2012, pp. 285288.
    26. 26)
      • 26. Boichat, N., Atienza, D., Khaled, N.: ‘Wavelet-based ECG delineation on a wearable embedded sensor platform’ (BSN, Washington DC, USA, 2009).
    27. 27)
    28. 28)
      • 28. PhysioBank Database. Available at http://www.physionet.org/physiobank/.
    29. 29)
      • 29. The Cortex M3 Processor.Available at http://www.arm.com/products/processors/cortex-m/cortex-m3.php.
    30. 30)
      • 30. Zuolo, L., Morandi, G., Zambelli, C., et al: ‘System interconnect extensions for fully transparent demand paging in low-cost MMU-less embedded systems’. Int. Symp. in System on Chip, 2013.
    31. 31)
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2015.0194
Loading

Related content

content/journals/10.1049/iet-cdt.2015.0194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address