http://iet.metastore.ingenta.com
1887

access icon openaccess Brain-inspired computing

Loading full text...

Full text loading...

/deliver/fulltext/iet-cdt/10/6/IET-CDT.2015.0171.html;jsessionid=s3qof6tfjsjk.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cdt.2015.0171&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kanerva, P.: ‘Sparse distributed memory’ (The MIT Press, 1988).
    2. 2)
      • 2. Moore, G.E.: ‘Cramming more components onto integrated circuits’, Electronics, 1965, 38, (8), pp. 114117.
    3. 3)
      • 3. Mahowald, M.: ‘VLSI analogs of neuronal visual processing: a synthesis of form and function’. Ph.D. dissertation, California Inst. Tech., Pasadena, CA, 1992.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 7. Hebb, D.O.: ‘The organization of behavior: a neuropsychological theory’ (Wiley, New York, NY, 1949).
    8. 8)
      • 8. Bi, G.Q., Poo, M.M.: ‘Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type’, J. Neurosci., 1998, 18, pp. 1046410472.
    9. 9)
      • 9. Tully, P.J., Hennig, M.H., Lansner, A.: ‘Synaptic and nonsynaptic plasticity approximating probabilistic inference’, Front. Synaptic Neurosci., 2014, 6, (8), pp. 116.
    10. 10)
    11. 11)
      • 11. Stromatias, E., Neil, D., Pfeiffer, M., et al: ‘Robustness of spiking deep nelief networks to noise and reduced bit precision of neuro-inspired hardware platforms’, Front. Neurosci., 2015, 9, (222), doi: 10.3389/fnins.2015.00222.
    12. 12)
      • 12. Ahmad, S., Hawkins, J.: ‘Properties of sparse distributed representations and their application to hierarchical temporal memory’, CoRR, 2015, abs/1503.07469, pp. 118.
    13. 13)
    14. 14)
    15. 15)
      • 15. Schemmel, J., Bruderle, D., Grubl, A., et al: ‘A wafer-scale neuromorphic hardware system for large-scale neural modeling’. Proc. Int. Symp. Circuits System, 2010, pp. 19471950.
    16. 16)
      • 16. Fox, P.J., Moore, S.W., Marsh, S.J.T., et al: ‘BluehiveVA field-programmable custom computing machine for extreme-scale real-time neural network simulation’. Proc. IEEE 20th Int. Symp. Field-Programmable Custom Comput.,March 2012, pp. 133140.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 20. Brown, A.D., Furber, S., Reeve, J.S., et al: ‘SpiNNaker – programming model’, IEEE Trans. Comput., 2015, 64, (6), pp. 17691782.
    21. 21)
    22. 22)
      • 22. Eliasmith, C., Anderson, C.H.: ‘Neural engineering: computation, representation, and dynamics in neurobiological systems’ (MIT Press, Cambridge, MA, 2003).
    23. 23)
    24. 24)
      • 24. Mundy, A., Knight, J., Stewart, T., et al: ‘An efficient SpiNNaker implementation of the neural engineering framework’. Proc. IJCNN 2015, Killarney, Ireland, 2015.
    25. 25)
    26. 26)
      • 26. Galluppi, F., Lagorce, X., Stromatias, E., et al: ‘A framework for plasticity implementation on the SpiNNaker neural architecture’, Front. Neurosci., 2014, 8, (429), doi: 10.3389/fnins.2014.00429.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2015.0171
Loading

Related content

content/journals/10.1049/iet-cdt.2015.0171
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address