Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Electronic characterisation of atomistic modelling based electrically doped nano bio p-i-n FET

In this study, electrically doped bio-molecular p-i-n field-effect transistor (FET) is designed and its electronic properties are investigated. Density functional theory along with non-equilibrium Green's function based first principle approach is used to design the bio-molecular FET at sub-atomic region. Three Adenine and two Thymine molecules are attached together to form 6.24 nm long and 1.40 nm wide bio p-i-n FET. This device is attached with two platinum electrodes and wrapped with a metallic cylindrical gate at high vacuum. Intrinsic n and p regions can be made possible within a bio-molecular device at room temperature by electrical doping without explicit dopants, which leads to conduct current by the device both in forward and reverse bias. The various quantum mechanical properties have been calculated using Poisson's equations and self-consistent function for the bio-molecular FET. Among these various quantum mechanical properties, the authors obtain high quantum transmission along with satisfactory current for the proposed device during the room temperature operation. The goal of this study is to highlight the design of a bio-molecular p-i-n FET with satisfactory large current using ultra low power dissipation.

References

    1. 1)
      • 32. Dey, D., Roy, P., De, D.: ‘Molecular modeling of nano bio pin FET’. Proc. 19th Int. Symp. on VLSI Design and Test (VDAT), Ahmedabad, India, June 2015, pp. 16.
    2. 2)
    3. 3)
      • 15. Ravariu, C., Ravariu, F.: ‘A test two-terminals biodevice with lipophylic and hidrophylic hormone solutions’, J. Optoelectron. Adv. Mater. JOAM, 2007, 9, (8), pp. 25892592.
    4. 4)
      • 7. Krotnev, I.P.: ‘Novel metallic field-effect transistors’. PhD thesis, University of Toronto, 2013.
    5. 5)
    6. 6)
    7. 7)
      • 27. Asenov, A., Trimberger, S.: ‘Mastering CMOS variability is the key to success’, IET Comput. Digit. Tech., 2015.
    8. 8)
    9. 9)
      • 51. Kim, N., Park, S., Kim, Y., et al: ‘Characteristics of ballistic tansport in short-channel MOSFETs’, J. Korean Phys. Soc., 2004, 45, (DEC), pp. S928S932.
    10. 10)
    11. 11)
    12. 12)
      • 52. Datta, S.: ‘Quantum transport: atom to transistor’ (Cambridge University Press, Cambridge, UK, 2005).
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 34. Lyshevski, M.A.: ‘Multi-valued DNA-based electronic nanodevices’. Proc. 35th IEEE Int. Symp. on Multiple-Valued Logic, Calgary, Canada, May 2005, pp. 3942.
    17. 17)
    18. 18)
      • 36. Cheng, K., Khakifirooz, A., Loubet, N., et al: ‘High performance extremely thin SOI (ETSOI) hybrid CMOS with Si channel NFET and strained SiGe channel PFET’. Proc. IEEE Int. Conf. Electron Devices Meeting (IEDM), San Francisco, December 2012, pp. 18.1.118.1.4.
    19. 19)
    20. 20)
      • 35. Leem, L., Srivastava, A., Li, S., et al: ‘Multi-scale simulation of partially unzipped CNT hetero-junction tunneling field effect transistor’. Proc. IEEE Int. Conf. Electron Devices Meeting (IEDM), San Francisco, December 2010, pp. 32.5.132.5.4.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 14. Ravairu, F., Podaru, C., Nedelcu, O., et al: ‘A Silicon nanoporous membrane used for drug delivery’. Proc. 27th IEEE Int. Semiconductor Conf. (CAS), Sinaia, Romania, October 2004, pp. 101104.
    25. 25)
      • 55. Kang, S.M., Leblebici, Y.: ‘CMOS digital integrated circuits’ (Tata McGraw-Hill Edition, New Delhi, 2003, 3rd edn.).
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 5. Rudaz, S.L.: ‘Maximizing electrical doping while reducing material cracking in III–V nitride semiconductor devices’. U.S. Patent No. 5,729,029, 17 March 1998.
    31. 31)
      • 37. Hisamoto, D., Lee, W.C., Kedzierski, J., et al: ‘FinFET-a self-aligned double-gate MOSFET scalable to 20 nm’, IEEE Trans. Electron Devices, 47, (12), pp. 23202325.
    32. 32)
    33. 33)
    34. 34)
      • 38. Ravariu, C., Ionescu-Tirgoviste, C., Ravariu, F.: ‘Glucose biofuels properties in the bloodstream in conjunction with the beta cell electro-physiology’. Proc. of Second Edition IEEE – ICCEP Int. Conf. on Clean Electrical Power Conf., Capri, Italy, Jun 2009, pp. 124127.
    35. 35)
      • 6. Silicon Nanowires: Tutorial, Version 12.8. QuantumWise A/S. Atomistix ToolKit (ATK), QuantumWise simulator. (2013). Available at http://www.quantumwise.com.
    36. 36)
      • 39. Ravariu, C., Ravariu, F., Dobrescu, D., et al: ‘A designing roule for a pressure sensor with PZT layer’. Proc. 24th IEEE Int. Semiconductor Conf., Sinaia, Romania, October 2001, pp. 379382.
    37. 37)
    38. 38)
    39. 39)
      • 13. Ravariu, C., Botan, R.: ‘The electrical transport mechanisms investigation in adrenergic synapses using a parallel BioOI biodevice’. Proc. 19th IEEE Int. Conf. of Biosignal, Brno, Czech Republic, June 2008, pp. 63.11563.118.
    40. 40)
      • 53. Mealli, C.: ‘Computational inorganic chemistry’, in Bartini, I. (Ed.): ‘Encyclopedia of life support systems (EOLSS)’ (Developed under the Auspices of the UNESCO, Eolss Publishers Oxford, UK, 2006), pp. 145.
    41. 41)
    42. 42)
      • 56. Kaur, N., Kaur, G., Jain, C.: ‘Investigation of fast switched CMOS inverter using 180 nm VLSI technology’, Int. J. Comput. Appl., 2012, 51, (15), pp. 1418.
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
      • 47. Hossain, M.S., Al-Dirini, F., Hossain, F.M., et al: ‘High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores’, Scientific Reports, 5, 2015, Article no. 11297.
    54. 54)
      • 9. Bangsaruntip, S., Koester, S.J., Majumdar, A., et al: ‘Nanowire pin tunnel field effect devices’. U.S. Patent No. 8,722,492, 13 May 2014.
    55. 55)
    56. 56)
    57. 57)
    58. 58)
      • 16. Zhao, Q., Wang, Y., Dong, J., et al: ‘Nanopore-based DNA analysis via graphene electrodes’, J. Nanomaterials, 2012, 2012, Article ID: 318950.
    59. 59)
    60. 60)
    61. 61)
    62. 62)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2015.0156
Loading

Related content

content/journals/10.1049/iet-cdt.2015.0156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address