http://iet.metastore.ingenta.com
1887

Electronic characterisation of atomistic modelling based electrically doped nano bio p-i-n FET

Electronic characterisation of atomistic modelling based electrically doped nano bio p-i-n FET

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, electrically doped bio-molecular p-i-n field-effect transistor (FET) is designed and its electronic properties are investigated. Density functional theory along with non-equilibrium Green's function based first principle approach is used to design the bio-molecular FET at sub-atomic region. Three Adenine and two Thymine molecules are attached together to form 6.24 nm long and 1.40 nm wide bio p-i-n FET. This device is attached with two platinum electrodes and wrapped with a metallic cylindrical gate at high vacuum. Intrinsic n and p regions can be made possible within a bio-molecular device at room temperature by electrical doping without explicit dopants, which leads to conduct current by the device both in forward and reverse bias. The various quantum mechanical properties have been calculated using Poisson's equations and self-consistent function for the bio-molecular FET. Among these various quantum mechanical properties, the authors obtain high quantum transmission along with satisfactory current for the proposed device during the room temperature operation. The goal of this study is to highlight the design of a bio-molecular p-i-n FET with satisfactory large current using ultra low power dissipation.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 5. Rudaz, S.L.: ‘Maximizing electrical doping while reducing material cracking in III–V nitride semiconductor devices’. U.S. Patent No. 5,729,029, 17 March 1998.
    6. 6)
      • 6. Silicon Nanowires: Tutorial, Version 12.8. QuantumWise A/S. Atomistix ToolKit (ATK), QuantumWise simulator. (2013). Available at http://www.quantumwise.com.
    7. 7)
      • 7. Krotnev, I.P.: ‘Novel metallic field-effect transistors’. PhD thesis, University of Toronto, 2013.
    8. 8)
    9. 9)
      • 9. Bangsaruntip, S., Koester, S.J., Majumdar, A., et al: ‘Nanowire pin tunnel field effect devices’. U.S. Patent No. 8,722,492, 13 May 2014.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 13. Ravariu, C., Botan, R.: ‘The electrical transport mechanisms investigation in adrenergic synapses using a parallel BioOI biodevice’. Proc. 19th IEEE Int. Conf. of Biosignal, Brno, Czech Republic, June 2008, pp. 63.11563.118.
    14. 14)
      • 14. Ravairu, F., Podaru, C., Nedelcu, O., et al: ‘A Silicon nanoporous membrane used for drug delivery’. Proc. 27th IEEE Int. Semiconductor Conf. (CAS), Sinaia, Romania, October 2004, pp. 101104.
    15. 15)
      • 15. Ravariu, C., Ravariu, F.: ‘A test two-terminals biodevice with lipophylic and hidrophylic hormone solutions’, J. Optoelectron. Adv. Mater. JOAM, 2007, 9, (8), pp. 25892592.
    16. 16)
      • 16. Zhao, Q., Wang, Y., Dong, J., et al: ‘Nanopore-based DNA analysis via graphene electrodes’, J. Nanomaterials, 2012, 2012, Article ID: 318950.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 27. Asenov, A., Trimberger, S.: ‘Mastering CMOS variability is the key to success’, IET Comput. Digit. Tech., 2015.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 32. Dey, D., Roy, P., De, D.: ‘Molecular modeling of nano bio pin FET’. Proc. 19th Int. Symp. on VLSI Design and Test (VDAT), Ahmedabad, India, June 2015, pp. 16.
    33. 33)
    34. 34)
      • 34. Lyshevski, M.A.: ‘Multi-valued DNA-based electronic nanodevices’. Proc. 35th IEEE Int. Symp. on Multiple-Valued Logic, Calgary, Canada, May 2005, pp. 3942.
    35. 35)
      • 35. Leem, L., Srivastava, A., Li, S., et al: ‘Multi-scale simulation of partially unzipped CNT hetero-junction tunneling field effect transistor’. Proc. IEEE Int. Conf. Electron Devices Meeting (IEDM), San Francisco, December 2010, pp. 32.5.132.5.4.
    36. 36)
      • 36. Cheng, K., Khakifirooz, A., Loubet, N., et al: ‘High performance extremely thin SOI (ETSOI) hybrid CMOS with Si channel NFET and strained SiGe channel PFET’. Proc. IEEE Int. Conf. Electron Devices Meeting (IEDM), San Francisco, December 2012, pp. 18.1.118.1.4.
    37. 37)
      • 37. Hisamoto, D., Lee, W.C., Kedzierski, J., et al: ‘FinFET-a self-aligned double-gate MOSFET scalable to 20 nm’, IEEE Trans. Electron Devices, 47, (12), pp. 23202325.
    38. 38)
      • 38. Ravariu, C., Ionescu-Tirgoviste, C., Ravariu, F.: ‘Glucose biofuels properties in the bloodstream in conjunction with the beta cell electro-physiology’. Proc. of Second Edition IEEE – ICCEP Int. Conf. on Clean Electrical Power Conf., Capri, Italy, Jun 2009, pp. 124127.
    39. 39)
      • 39. Ravariu, C., Ravariu, F., Dobrescu, D., et al: ‘A designing roule for a pressure sensor with PZT layer’. Proc. 24th IEEE Int. Semiconductor Conf., Sinaia, Romania, October 2001, pp. 379382.
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • 47. Hossain, M.S., Al-Dirini, F., Hossain, F.M., et al: ‘High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores’, Scientific Reports, 5, 2015, Article no. 11297.
    48. 48)
    49. 49)
    50. 50)
    51. 51)
      • 51. Kim, N., Park, S., Kim, Y., et al: ‘Characteristics of ballistic tansport in short-channel MOSFETs’, J. Korean Phys. Soc., 2004, 45, (DEC), pp. S928S932.
    52. 52)
      • 52. Datta, S.: ‘Quantum transport: atom to transistor’ (Cambridge University Press, Cambridge, UK, 2005).
    53. 53)
      • 53. Mealli, C.: ‘Computational inorganic chemistry’, in Bartini, I. (Ed.): ‘Encyclopedia of life support systems (EOLSS)’ (Developed under the Auspices of the UNESCO, Eolss Publishers Oxford, UK, 2006), pp. 145.
    54. 54)
    55. 55)
      • 55. Kang, S.M., Leblebici, Y.: ‘CMOS digital integrated circuits’ (Tata McGraw-Hill Edition, New Delhi, 2003, 3rd edn.).
    56. 56)
      • 56. Kaur, N., Kaur, G., Jain, C.: ‘Investigation of fast switched CMOS inverter using 180 nm VLSI technology’, Int. J. Comput. Appl., 2012, 51, (15), pp. 1418.
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2015.0156
Loading

Related content

content/journals/10.1049/iet-cdt.2015.0156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address