Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

State assignment for sequential circuits using multi-objective genetic algorithm

State assignment for sequential circuits using multi-objective genetic algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a new approach using a multi-objective genetic algorithm (MOGA) is proposed to determine the optimal state assignment with less area and power dissipations for completely and incompletely specified sequential circuits. The goal is to find the best assignments which reduce the component count and switching activity. The MOGA employs a Pareto ranking scheme and produces a set of state assignments, which are optimal in both objectives. The ESPRESSO tool is used to optimise the combinational parts of the sequential circuits. Experimental results are given using a personal computer with an Intel CPU of 2.4 GHz and 2 GB RAM. The algorithm is implemented using C++ and fully tested with benchmark examples. The experimental results show that saving in components and switching activity are achieved in most of the benchmarks tested compared with recent published research.

References

    1. 1)
      • Z. Michalewicz . (1996) Genetic algorithms+data structures=evolutionary programs.
    2. 2)
      • J.-K. Rho , G. Hachtel , F. Somenzi , R. Jacoby . Exact and Heuristic algorithms for the minimization of incompletely specified state machines. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. , 2 , 167 - 177
    3. 3)
      • W.M. Aly . Solving the state assignment problem using stochastic search aided with simulated annealing. Am. J. Eng. Appl. Sci. , 4 , 710 - 714
    4. 4)
      • http://sontrak.com/download_esp.aspx, Sontrak, Technical software, accessed March 2010.
    5. 5)
      • J. Hartmains , R.E. Stearns . (1966) Algebraic structure theory of sequential machines.
    6. 6)
    7. 7)
      • K. Abdullah , W.C. David , A.E. Smith . Multi-objective optimization using genetic algorithms: a tutorial. Reliability Engineering and System Safety 91 , 992 - 1007
    8. 8)
      • W.-T. Shiue . Novel state minimization and state assignment in finite state machine design for low power portable devices. Integr. VLSI J. , 549 - 570
    9. 9)
      • A.E.A. Almaini . Sequential machine implementations using universal logic modules. IEEE Trans. Comput. , 10 , 951 - 960
    10. 10)
      • C. Tsui , M. Pedram , C. Chen , A.M. Despain . Low power state assignment targeting two and multi-level logic implementations. ICCAD , 82 - 87
    11. 11)
      • T. Villa , A. Sangiovanni-Vincentelli . NOVA: state assignment of finite state machine for optimal two-level logic implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. , 9 , 905 - 924
    12. 12)
      • S. Chow , Y. Ho , T. Hwang , C. Liu . Low power realization of finite state machines – a decomposition approach. ACM Trans. Des. Autom. Electron. Syst. , 3 , 315 - 340
    13. 13)
    14. 14)
      • X. Yinshui , A.E.A. Almaini , W. Xunwei . Power optimization of finite state machines based on genetic algorithm. J. Electron. , 3 , 194 - 201
    15. 15)
      • Olson, E.P.: `Optimal state assignment of sequential circuits using a genetic local search with flexible cost functions', 1995, Phd, Urbana-Champaign, University of Illinois.
    16. 16)
    17. 17)
    18. 18)
      • Z. Michalewicz , D.B. Fogel . (2004) How to solve it: modern heuristics.
    19. 19)
      • D.E. Goldberg . (1989) Genetic algorithms in search, optimisation, and machinelearning.
    20. 20)
      • L. Jóźwiak , A. Ślusarczyk . General decomposition of incompletely specified sequential machines with multi-state behaviour realization. J. Syst. Archit. , 445 - 492
    21. 21)
      • L. Benini , G. Micheli De . State assignment for low power dissipation. IEEE Custom. Integr. Circuits Conf. , 3 , 136 - 139
    22. 22)
    23. 23)
      • Xia, Y., Ye, X., Wang, L., Tao, W., Almaini, A.E.A.: `A uniform framework of low power FSM partition approach', IEEE Int. Conf. on Commun., Circuits and Systems, 2006, China, p. 2642–2646.
    24. 24)
    25. 25)
      • S. Chattopadhyay , P.N. Reddy . Finite state machine state assignment targeting low power consumption. IEE Proc. Comput. Dig. Technol. , 1 , 61 - 70
    26. 26)
      • T.A. Dolotta , E.J. McCluskey . The coding of inernal states of sequential circuits. IEEE Trans. Electron. Comput. , 549 - 562
    27. 27)
      • S. Gören , F.J. Ferguson . On state reduction of incompletely specified finite state machines. Comput. Electr. Eng. , 58 - 69
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2010.0045
Loading

Related content

content/journals/10.1049/iet-cdt.2010.0045
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address