Your browser does not support JavaScript!

Variability compensation for full-swing against low-swing on-chip communication

Variability compensation for full-swing against low-swing on-chip communication

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Adaptive body bias (ABB) and adaptive supply voltage (ASV) are effective methods for post-silicon tuning to reduce variability on generic combinational circuits or microprocessor circuit sub-blocks. We focus in this work on global point-to-point interconnects, which are evolving into complex communication channels with drivers and receivers, in an attempt to mitigate the effects of reverse scaling and reduce power. The characterisation of the performance spread of these links and the exploration of effective and power-aware compensation techniques for them is becoming a key design issue. This work compares the effectiveness of ABB against ASV when put at work on two on-chip point-to-point link architectures: a traditional full-swing and a low-swing signalling scheme for low-power communication. This work provides guidelines for the post-silicon variability compensation of these communication channels, while considering realistic layout effects. In particular, the implications of cross-coupling capacitance on the effectiveness of variability compensation are analysed in this work.


    1. 1)
      • Hatirnaz, I., Badel, S., Pazos, N.: `Early wire characterization for predictable network-on-chip global interconnects', SLIP’07, 2007, p. 57–64.
    2. 2)
    3. 3)
      • Sylvester, D., Keutzer, K.: `Getting to the bottom of deep sub-micron II: a global paradigm', Proc. IEEE Int. Symp. Physical Design, 1999, p. 193–200.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • Rjoub, A., Koufopavlou, O.: `Efficient drivers, receivers and repeaters for low power CMOS bus architectures', ICECS’99, 1999, 2, p. 789–794.
    8. 8)
      • Bertozzi, D., Benini, L., Riccò, B.: `Parametric timing and power macromodels for high level simulation of low-swing interconnects', ISLPED 2002, 2002, p. 307–312.
    9. 9)
      • Papanicolaou, A., Miranda, M., Marchal, P.: `At tape-out: Can system yield in terms of timing/energy specifications be predicted?', IEEE Custom Integrated Circuits Conf., 2007, p. 773–778.
    10. 10)
      • Kwon, C.-K., Rho, K.-M., Lee, K.: `High speed and low swing interface circuits using dynamic over-driving and adaptive sensing scheme', ICVC ‘99, 1999, p. 388–391.
    11. 11)
      • Karlsson, M., Vesterbacka, M., Wanhammar, L.: `Low-swing charge recycle bus drivers', ISCA’98, 1998, p. 117–120.
    12. 12)
    13. 13)
    14. 14)
      • Paci, G., Bertozzi, D., Benini, L.: `Effectiveness of adaptive supply voltage and body bias as post-silicon variability compensation techniques for full-swing and low-swing on-chip communication channels', DATE'09, 2009, p. 1404–1409.
    15. 15)
      • Terrassan, N., Bertozzi, D., Bogliolo, A.: `Spice-accurate systemC macromodels of noisy on-chip communication chnnels', Proc. SPI-07, 2007.
    16. 16)
      • Jeong, W., Paul, B.C., Roy, K.: `Adaptive supply voltage technique for low swing interconnects', ASP-DAC 2004, 2004, p. 284–287.
    17. 17)
    18. 18)
    19. 19)
      • Bonesi, S., Bertozzi, D., Benini, L., Macii, E.: `Process variation tolerant pipeline design through a placement-aware multiple voltage island design style', DATE 2008, 2008, p. 967–972.
    20. 20)
      • Humenay, E., Tarjan, D., Skadron, K.: `Impact of process variations on multicore performance symmetry', DATE'07, 2007, p. 1653–1658.
    21. 21)
      • Bae, J., Kim, J.-Y., Yoo, H.-J.: `0.6pJ/b 3Gb/s/ch transceiver in 0.18 um CMOS for 10 mm on-chip interconnects', ISCAS 2008, 2008, p. 2861–2864.
    22. 22)
      • Narasimhan, A., Srinivasaraghavan, B., Sridhar, R.: `A low-power asymmetric source driver level converter based current-mode signaling scheme for global interconnects', Int. Conf. on VLSI Design, 2006, p. 491–494.
    23. 23)
      • Medardoni, S., Lajolo, M., Bertozzi, D.: `Variation tolerant NoC design by means of self-calibrating links', DATE’08, 2008, p. 1402–1407.
    24. 24)
      • Gregg, J., Chen, T.W.: `Post silicon power/performance optimization in the presence of process variations using individual well adaptive body biasing (IWABB)', Fifth Int. Symp. on Quality Electronic Design, 2004, p. 453–458.
    25. 25)
      • Dobkin, R., Morgenshtein, A., Kolodny, A., Ginosar, R.: `Parallel vs. serial on-chip communication', SLIP 2008, 2008, p. 43–50.
    26. 26)
      • Yang, B.-D., Kim, L.-S.: `High-speed and low-swing on-chip bus interface using threshold voltage swing driver and dual sense amplifier receiver', ESSCIRC'00, 2000, p. 105–108.
    27. 27)
      • Wan, H.C., Chenming, H., Noda, K.: `Channel doping engineering of MOSFET with adaptable threshold voltage using body effect for low voltage and low power applications', Int. Symp. VLSI Technology, Systems, and Applications, 1995, p. 159–163.
    28. 28)
      • Sathanur, A., Pullini, A., Benini, L., De Micheli, G., Macii, E.: `Physically clustered forward body biasing for variability compensation in nanometer CMOS design', DATE'09, 2009, p. 154–159.
    29. 29)
    30. 30)
      • Humenay, E., Tarjan, D., Skadron, K.: `Impact of parameter variations on multi-core chips', Int. Workshop on Architectural Support for Gigascale Integration, 2006.
    31. 31)
      • Venkatraman, V., Anders, M., Kaul, H., Burleson, W., Krishnamurthy, R.: `A low-swing signaling circuit technique for 65 nm on-chip interconnects', Int. SOC Conf., 2006, p. 289–292.
    32. 32)
      • Meijer, M., Pessolano, F., Pineda De Gyvez, J.: `Technology exploration for adaptive power and frequency scaling in 90 nm CMOS', ISLPED'04, 2004, p. 14–19.
    33. 33)
      • Garcia, J.C., Montiel-Nelson, J.A., Nooshabadi, S.: `High performance bootstrapped CMOS low to high-swing level-converter for on-chip interconnects', ECCTD 2007, 2007, p. 795–798.
    34. 34)
    35. 35)
      • Pullini, A., Angiolini, F., Bertozzi, D., Benini, L.: `Fault tolerance overhead in network-on-chip flow control schemes', Proc. 18th Annual Symp. on Integrated Circuits and System Design (SBCCI) 2005, 4–7 September 2005, Florianópolis, Brazil, p. 224–229.

Related content

This is a required field
Please enter a valid email address