Single error correctable bit parallel multipliers over GF(2m)

Access Full Text

Single error correctable bit parallel multipliers over GF(2m)

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Motivated by the problems associated with soft errors in digital circuits and fault-related attacks in cryptographic hardware, a systematic method for designing single error correcting multiplier circuits is presented for finite fields or Galois fields over GF(2m). Multiple parity predictions to correct single errors based on the Hamming principles are used. The expressions for the parity prediction are derived from the input operands, and are based on the primitive polynomials of the fields. This technique, when compared with existing ones, gives better performance. It is shown that single error correction (SEC) multipliers over GF(2m) require slightly over 100% extra hardware, whereas with the traditional SEC techniques, this figure is more than 200%. Since single bit internal faults can cause multiple faults in the outputs, this has also been addressed here by using multiple Hamming codes with optimised hardware.

Inspec keywords: digital circuits; Hamming codes; multiplying circuits; error correction; Galois fields; polynomials

Other keywords: single error correction multipliers; single error correctable bit parallel multipliers; Galois fields; multiple parity predictions; multiple Hamming codes; soft errors; single error correcting multiplier circuits; digital circuits; cryptographic hardware; fault-related attacks; primitive polynomials

Subjects: Logic and switching circuits; Algebra; Algebra; Logic circuits; Codes

References

    1. 1)
      • Gaubatz, G., Sunar, B.: `Robust finite field arithmetic for fault-tolerant public-key cryptography', 2ndWorkshop on Fault Tolerance and Diagnosis in Cryptography (FTDC), 2005.
    2. 2)
      • S. Fenn , M. Gossel , M. Benaissa , D. Taylor . Online error detection for bit-seial multipliers in GF(2m). J. Electron. Test. Theory Appl. , 29 - 40
    3. 3)
      • H. Rahaman , J. Mathew , D.K. Pradhan , A.M. Jabir . C-testable bit parallel multipliers over GF(2m). ACM Trans. Des. Autom. Electron. Syst. , 1 , 1 - 18
    4. 4)
      • A. Reyhani-Masoleh , M. Anwar Hasan . Low complexity bit parallel architectures for polynomial basis multiplication over GF(2m). IEEE Trans. Comput. , 8 , 945 - 959
    5. 5)
      • D. Boneh , R.A. DeMillo , R.J. Lipton . On the importance of eliminating errors in cryptographic computations. J. Cryptol. , 101 - 119
    6. 6)
      • Mastrovito, E.D.: `VLSI architectures for computation in galois fields', 1991, PhD, Linkping University, Sweden.
    7. 7)
      • D.K. Pradhan . A theory of galois switching functions. IEEE Trans. Comput. , 3 , 239 - 248
    8. 8)
      • A. Reyhani-Masoleh , M. Anwar Hasan . Fault detection architectures for field multiplication using polynomial bases, IEEE 91(11). IEEE Trans. Comput. , 9 , 1089 - 1103
    9. 9)
      • C.Y. Lee , C.W. Chiou , J.M. Lin . Concurrent error detection in a bit-parallel systolic multiplier for dual basis of GF(2m). J. Electron. Test. Theory Appl. , 539 - 549
    10. 10)
      • M. Ciet , M.J. Dueck . Elliptic curve cryptosystems in the presence of permanent and transient faults. Des. Codes Cryptogr. , 1 , 33 - 43
    11. 11)
      • C.Y. Lee , C.W. Chiou , J.M. Lin . Concurrent error detection in a polynomial basis multiplier over GF(2m). J. Electron. Test. Theory Appl. , 2 , 143 - 150
    12. 12)
      • R.W. Hamming . Error detecting and error correcting codes. Bell Syst. Tech. J. , 147 - 160
    13. 13)
      • M. Nicolaidis , Y. Zorian . Online testing for VLSI - A compendium of approaches. J. Electron. Test. Theory Appl. , 7 - 20
    14. 14)
      • A. Reyhani-Masoleh , M.A. Hasan . Towards fault-tolerant cryptographic computations over finite fields. ACM Trans. Embed. Comput. Syst. (TECS) , 3 , 573 - 613
    15. 15)
      • S. Bayat-Sarmadi , M.A. Hasan . On concurrent detection of errors in polynomial basis multiplication. IEEE Trans. Very Large Scale Integr. Syst. , 4 , 413 - 426
    16. 16)
      • S. Mitra , N. Seifert , M. Zhang , Q. Shi , K. Kim . Robust system design with built-in soft error resilience. IEEE Comput. , 2 , 43 - 52
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2008.0015
Loading

Related content

content/journals/10.1049/iet-cdt.2008.0015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading