Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Silicon-on-insulator for high-temperature applications

Silicon-on-insulator for high-temperature applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The silicon-on-insulator (SOI) CMOS technology is one of the best candidates for high-temperature applications due to its low leakage current, steep subthreshold slope, absence of latch-up phenomenon and temperature‐resistant threshold voltage. However, the most critical elements for high temperature applications are transmission lines, especially thin-film microstrip lines. In the paper, the impact of high-temperature operation on the RF performance of some SOI circuits is analysed up to 250°C.

References

    1. 1)
      • A.A. Osman , M.A. Osman , N.S. Dogan . Zero-temperature-coefficient biasing point of partially depleted SOI MOSFETs. IEEE Trans. Electron Devices , 9 , 1709 - 1711
    2. 2)
      • D. Flandre , J.-P. Raskin , D. Vanhoenacker-Janvier , M.J. Deen , T.A. Fjeldly . (2002) SOI CMOS transistors for RF and microwave applications, CMOS RF Modeling, Characterization and Applications.
    3. 3)
      • J.P. Colinge . (1991) Silicon-on-insulator technology: materials to VLSI.
    4. 4)
    5. 5)
      • Assaderaghi, F., Sinitsky, D., Parke, S.: `A dynamic threshold voltage MOSFET (DTMOS) for ultra-low voltage operation', Proc. IEDM, 1994, p. 809–812.
    6. 6)
      • J.-P. Colinge . Reduction of kink effect in thin-film SOI MOSFET's. IEEE Electron Device Lett. , 2 , 97 - 99
    7. 7)
      • M. Vanmackelberg , C. Raynaud , O. Faynot . 0.25 µm fully depleted SOI MOSFETs for RF mixed analog-digital circuits,including a comparison with partially depleted devices with relation to high frequency noise parameters. Solid-State Electron. , 379 - 386
    8. 8)
      • Dehan, M.: `Characterization and modeling of SOI RF integrated components', November 2003, PhD, Université catholique de Louvain, Belgium, p. 230.
    9. 9)
      • Si Moussa, M., Pavageau, C., Danneville, F.: `Temperature effect on the performance of a traveling wave amplifier in 130 nm SOI technology', IEEE Radio Frequency Integrated Circuits Symp, 11-17 June 2005, Long Beach, USA, p. 495–498.
    10. 10)
    11. 11)
      • D. Flandre , S. Adriaensen , A. Akheyar . Fully depleted SOI CMOS technology for heterogeneous micropower, high-temperature or RF Microsystems. IEEE J. Solid-State Circuits , 541 - 549
    12. 12)
      • J. Yue , J. Kriz . (2001) SOI CMOS technology for RF system-on-chip applications.
    13. 13)
      • Si Moussa, M.: `CMOS SOI distributed amplifiers for new communication systems', September 2006, PhD, Université catholique de Louvain, Belgium, p. 198.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds_20070117
Loading

Related content

content/journals/10.1049/iet-cds_20070117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address