Experimental study and simulations on two different avalanche modes in trench power MOSFETs

Experimental study and simulations on two different avalanche modes in trench power MOSFETs

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The avalanche behaviour of a new trench power MOSFET was investigated with the help of measurements and electro-thermal device simulation techniques. Two different destruction regimes were identified experimentally: energy-related destruction and current-related destruction. Possible simulation approaches to account for the different effects were proposed. The corresponding results agreed well with measurements. Furthermore, the simulations qualitatively predicted the experimental results' dependence of avalanche behaviour on design parameters.


    1. 1)
      • Görgens, L., Siemieniec, R., Sanchez, J.: `MOSFET technology as a key for high power density converters', Proc. EPE-PEMC, 2006, p. 1968–1973.
    2. 2)
      • Siemieniec, R., Hirler, F., Schlögl, A., Rösch, M., Soufi-Amlashi, N., Ropohl, J., Hiller, U.: `A new and rugged 100 V power MOSFET', Proc. EPE-PEMC, 2006, p. 32–37.
    3. 3)
      • Deboy, G., März, M., Stengl, J.-P., Sack, H., Tihanyi, J., Weber, H.: `A new generation of high voltage MOSFETs breaks the limit line of silicon', Proc. IEDM, 1998, p. 683–685.
    4. 4)
      • K. Brennan . (1999) The physics of semiconductors.
    5. 5)
      • R. Paul . (1974) Halbleiterphysik.
    6. 6)
    7. 7)
      • A. Chynoweth . Ionization rates for electrons and holes in silicon. Phys. Rev. , 1537 - 1540
    8. 8)
      • T. Lackner . Avalanche multiplication in semiconductors: A modification of chynoweth's law. Solid-State Electron , 33 - 42
    9. 9)
    10. 10)
      • Valdinoci, M., Ventura, D., Vecchi, M.C., Rudan, M., Baccarani, G., Illien, F., Stricker, A., Zullino, L.: `Impact-ionization at large operating temperature', Proc. SISPAD, 1999, p. 27–30.
    11. 11)
      • G. Wunsch , H.-G. Schulz . (1989) Elektromagnetische felder.
    12. 12)
      • Kinzer, D.: `Advances in power switch technology for 40–300 V applications', Proc. EPE, 2005.
    13. 13)
      • Blackburn, D.L.: `Power MOSFET failure revisited', Proc. PESC, 1988.
    14. 14)
      • , MEDICI version X-2005.10, Synopsis Inc..
    15. 15)
      • Chinnaswamy, K., Khandelwal, P., Trivedi, M., Shenai, K.: `Unclamped inductive switching dynamics in lateral and vertical power DMOSFETs', Proc. IAS, 1999.
    16. 16)
      • Deckelmann, A.I., Wachutka, G., Krumrey, J., Hirler, F.: `Simulation of the failure mechanism of power DMOS transistors under avalanche stress', Proc. SISPAD, 2004, p. 215–218.

Related content

This is a required field
Please enter a valid email address