http://iet.metastore.ingenta.com
1887

Scalable and systolic Montgomery multiplier over GF(2m) generated by trinomials

Scalable and systolic Montgomery multiplier over GF(2m) generated by trinomials

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A Montgomery's algorithm in GF(2m) based on the Hankel matrix–vector representation is proposed. The hardware architecture obtained from this algorithm indicates low-complexity bit-parallel systolic multipliers with irreducible trinomials. The results reveal that the proposed multiplier saves approximately 36% of space complexity as compared to an existing systolic Montgomery multiplier for trinomials. A scalable and systolic Montgomery multiplier is also developed by applying the block-Hankel matrix–vector representation. The proposed scalable systolic architecture is demonstrated to have significantly less time–area product complexity than existing digit-serial systolic architectures. Furthermore, the proposed architectures have regularity, modularity and local interconnectability, making them highly appropriate for VLSI implementation.

References

    1. 1)
      • R. Lidl , H. Niederreiter . (1994) Introduction to finite fields and their applications.
    2. 2)
      • R. Lidl , H. Niederreiter . (1997) Finite fields.
    3. 3)
      • C.Y. Lee , C.W. Chiou . Design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2m). IEICE Trans. Fundam. , 11 , 3169 - 3179
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • C.Y. Lee , E.H. Lu , L.F. Sun . Low-complexity bit-parallel systolic architecture for computing AB2+C in a class of finite field GF(2m). IEEE Trans. Circuits Syst. II , 5 , 519 - 523
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • Kwon, S., Kim, C.H., Hong, C.P.: `Unidirectional two dimensional systolic array for multiplication in GF(2', 6thInt. Workshop on Fuzzy Logic and Applications, WILF 2005, 2006, LNCS, 3849, p. 420–426.
    14. 14)
      • `Digital signature standard', FIPS Publication 186-2, January 2000.
    15. 15)
      • P.L. Montgomery . Modular multiplication without trial division. Math. Comput. , 519 - 521
    16. 16)
      • Ç.K. Koç , T. Acar . Montgomery multiplication in GF(2k). Des. Codes Cryptogr. , 57 - 69
    17. 17)
    18. 18)
      • C.W. Chiou , C.Y. Lee , A.W. Deng , J.M. Lin . Concurrent error detection in Montgomery multiplication over GF(2m). IEICE Trans. Fundam. , 2 , 566 - 574
    19. 19)
      • C.W. Chiou , C.Y. Lee , A.W. Deng , J.M. Lin . Efficient VLSI implementation for Montgomery multiplication in GF(2m). Tamkang J. Sci. Eng. , 4 , 365 - 372
    20. 20)
    21. 21)
      • Mentens, N., Őrs, S.B., Preneel, B.: `An FPGA implementation of an elliptic curve processor over GF(2', Proc. 2004 Great Lakes Symp. on VLSI (GLSVLSI 2004), 2004, p. 454–457.
    22. 22)
      • C. Paar , P. Fleischmann , P. Soria-Rodriguez . Fast arithmetic for public-key algorithms in Galois fields with composite exponents. IEEE Trans. Comput. , 10 , 1025 - 1034
    23. 23)
      • C.H. Kim , C.P. Hong , S. Kwon . A digit-serial multiplier for finite field GF(2m). IEEE Trans. VLSI , 4 , 476 - 483
    24. 24)
    25. 25)
    26. 26)
      • Gutub, A.A.-A., Tenca, A.F., Savas, E., Koc, C.K.: `Scalable and unified hardware to compute Montgomery inverse in GF(', Cryptographic hardware and embedded systems – CHES 2002, 2002, LNCS, 2523.
    27. 27)
      • Savas, E., Tenca, A.F., Koç, Ç.K.: `A scalable and unified multiplier architecture for finite fields GF(', Cryptographic hardware and embedded systems – CHES 2000, 2000, LNCS, 1965, p. 281–296.
    28. 28)
      • N. Weste , K. Eshraghian . (1985) Principles of CMOS VLSI design, a system perspective.
    29. 29)
      • S.M. Kang , Y. Leblebici . (1999) CMOS digital integrated circuits-analysis and design.
    30. 30)
      • S.Y. Kung . (1988) VLSI array processors.
    31. 31)
      • ‘M74HC86, Quad exclusive OR gate’, STMicroelectronics 2001http://www.st.com/stonline/books/pdf/docs/2006.pdf.
    32. 32)
      • ‘M74HC08, Quad 2-Input AND Gate’, STMicroelectronics 2001, http://www.st.com/stonline/books/pdf/docs/1885.pdf.
    33. 33)
      • M74HC279, Quad S̄-R̄ Latch’, STMicroelectronics 2001http://www.st.com/stonline/books/pdf/docs/1937.pdf.
    34. 34)
      • M74HC257, Quad 2 Channel Multiplexer (3-State), STMicroelectronics 2001http://www.st.com/stonline/books/pdf/docs/1932.pdf.
    35. 35)
      • B. Sunar , C.K. Koc . Mastrovito multiplier for all trinomials. IEEE Trans. Comput. , 5 , 522 - 527
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds_20060314
Loading

Related content

content/journals/10.1049/iet-cds_20060314
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address