http://iet.metastore.ingenta.com
1887

Systematic design of programmable operational amplifiers with noise–power trade-off

Systematic design of programmable operational amplifiers with noise–power trade-off

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A methodology for the systematic design of a programmable operational amplifier (opamp) is described. With this methodology, the opamp is programmable concerning noise and power consumption while keeping the stability for the whole operation range with a constant phase margin of ϕres=70°. The theoretical model is developed with the help of the transfer characteristics of the opamp determining the degrees of freedom. Experimental results for a 0.35-µm CMOS opamp show either ultra low-noise of 2 nV/√Hz or low-power consumption of 140 µW while keeping the opamp stable over the whole range of programmability.

References

    1. 1)
      • Carloni, L.P., De Bernardinis, F., Sangiovanni-Vincentelli, A.L., Sgroi, M.: `The art of integrated systems design', Proc. ESSCIRC, September 2002, Florence, Italy, p. 25–36.
    2. 2)
      • J.D. Bronzino . (1995) The biomedical engineering handbook.
    3. 3)
      • P.R. Rijnbeek , J.A. Kors , M. Witsenburg . Minimum bandwidth requirements for recording of pediatric electrocardiograms. Circulation , 3087 - 3090
    4. 4)
    5. 5)
      • Fuchs, B.: `Integrierte Sensorschaltungen zur EKG- und EEG-Ableitung mit prädiktiver Signalverarbeitung', 2003, PhD, Hamburg University of Technology.
    6. 6)
      • Bronskowski, C., Schroeder, D.: `A programmable analog front end for the acquisition of biomedical signals', Proc. ProRISC Workshop, November 2004, Veldhoven, The Netherlands, p. 474–477, ISBN 90-73461-43-X.
    7. 7)
      • Texas Instruments, TLC271, www.ti.com, 1996.
    8. 8)
      • National Semiconductors, LM146, www.national.com, 2000.
    9. 9)
    10. 10)
      • J.H. Huijsing , R. Hogervorst , K.-J. de Langen . Low-power low-voltage VLSI operational amplifier cells. IEEE Trans. Circ. Syst. I , 11 , 841 - 852
    11. 11)
      • S. Sakurai , M. Ismail . (1995) Low-voltage CMOS operational amplifiers.
    12. 12)
    13. 13)
      • H. Unbehauen . (1997) Regelungstechnik I.
    14. 14)
      • R. Drechsler , N. Drechsler . (2003) Evolutionary algorithms for embedded system design.
    15. 15)
      • Menolfi, C.I.: `Low-noise CMOS chopper instrumentation amplifiers for thermoelectric microsensors', 2000, PhD, Eidgenössische Technische Hochschule Zürich, (Hartung-Gorre Verlag, 2000).
    16. 16)
      • C.C. Enz , G.C. Temes . Circuit techniques for reducing the effects of Op-Amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE , 11 , 1584 - 1614
    17. 17)
    18. 18)
      • C. Eichenberger . (1989) Charge injection in MOS-integrated sample-and-hold and switched-capacitor circuits, Series in microelectronics.
    19. 19)
      • Witte, J.F., Makinwa, K.A.A., Huijsing, J.H.: `The effect of non-idealities in CMOS chopper amplifiers', Proc. ProRISC Workshop, November 2004, Veldhoven, The Netherlands, p. 616–619, ISBN 90-73461-43-X.
    20. 20)
      • Bronskowski, C., Schroeder, D.: `A programmable low-noise, low-power operational amplifier in a 0.35µm CMOS technology', Proc. Austrochip, October 2004, Villach, Austria, p. 43–47, ISBN 3-200-00211-5.
    21. 21)
      • D.A. Johns , K. Martin . (1997) Analog integrated circuit design.
    22. 22)
      • P.E. Allen , D.R. Holberg . (2002) CMOS analog circuit design.
    23. 23)
      • Y. Taur , T.H. Ning . (1998) Fundamentals of modern VLSI devices.
    24. 24)
      • W. Krautschneider . (2002) Circuit Design, Lecture Notes.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds_20060182
Loading

Related content

content/journals/10.1049/iet-cds_20060182
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address