http://iet.metastore.ingenta.com
1887

Photocurrent response of the carbon nanotube–silicon heterojunction array

Photocurrent response of the carbon nanotube–silicon heterojunction array

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A highly ordered array of parallel, identical carbon nanotubes is grown non-lithographically in a bottom-up fabrication approach to form a heterojunction with a silicon substrate. Evidence of a space-charge separated region at the nanotube–silicon interface is present in the form of diode rectification and a closed-circuit zero-bias photocurrent in response to infrared light. Because carbon nanotubes are narrow bandgap semiconductors, their heterojunction with silicon was analysed spectrally via Fourier transform infrared photocurrent spectroscopy with the aim of investigating the suitability of this structure for infrared (IR) detector applications. IR photoresponse shows signs of temperature-dependent activation that is complex but consistent with estimates of the heterojunction barrier height. Considering the many interesting benefits and properties of carbon nanotubes, these results despite their earliness suggest that nanotube–silicon heterojunction systems could form the foundation for a new kind of infrared detection device.

References

    1. 1)
      • S. Iijima . Helical microtubules of graphitic carbon. Nature , 6348 , 56 - 58
    2. 2)
      • S. Tans , S. Verschueren , C. Dekker . Room-temperatue transistor based on single carbon nanotube. Nature , 49 - 52
    3. 3)
      • R. Martel , T. Schmidt , H.R. Shea , T. Hertel , P. Avouris . Single- and multi-wall carbon nanotube field-effect transistor. Appl. Phys. Lett. , 2447 - 2449
    4. 4)
      • A. Bachtold , P. Hadley , T. Nakanishi , C. Dekker . Logic circuits with carbon nanotube transistors. Science , 5545 , 1317 - 1320
    5. 5)
      • A. Javey , Q. Wang , A. Urai , Y. Li , H. Dai . Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. , 9 , 929 - 932
    6. 6)
      • V. Derycke , R. Martel , J. Appenzeller , P. Avouris . Carbon nanotube inter- and intramolecular logic gates. Nano Lett. , 9 , 453 - 456
    7. 7)
      • S. Bachilo , M. Strano , C. Kittrell , R. Hauge , R. Smalley , R. Weisman . Structure-assigned optical spectra of single-walled carbon nanotubes. Science , 2361 - 2366
    8. 8)
      • J.A. Misewich , R. Martel , P. Avouris , J.C. Tang , S. Heinze , J. Tersoff . Electrically induced optical emission from carbon nanotube FET. Science , 5620 , 783 - 786
    9. 9)
      • A. Fujiwara , Y. Matsuoka , H. Suematsu . Photoconductivity in semiconducting single-walled carbon nanotubes. Jpn. J. Appl. Phys. , 1229 - 1231
    10. 10)
      • M. Freitag , Y. Martin , J.A. Misewich , R. Martel , P. Avouris . Photoconductivity of single carbon nanotubes. Nano Lett. , 8 , 1067 - 1071
    11. 11)
      • L.D. Dominicis , S. Botti , L.S. Asilyan . Second- and third- harmonic generation in single-walled carbon nanotubes at nanosecond time scale. Appl. Phys. Lett. , 8 , 1418 - 1420
    12. 12)
      • V. Perebeinos , J. Tersoff , P. Avouris . Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. , 25 , 257402/1 - 4
    13. 13)
      • T. Ando . Excitons in carbon nanotubes. J. Phys. Soc. Jpn , 4 , 1066 - 1073
    14. 14)
      • A. Rakitin , C. Papadopoulos , J.M. Xu . Electronic properties of amorphous carbon nanotubes. Phys. Rev. B , 8 , 5793 - 5796
    15. 15)
      • C.H. Olk , J.P. Herremans . Scanning tunneling spectroscopy of carbon nanotubes. J. Mater. Res. , 2 , 259 - 262
    16. 16)
      • R. Saito , G. Dresselhaus , M.S. Dresselhaus . (1998) Physical properties of carbon nanotubes.
    17. 17)
      • A. Hartschuh , H.N. Pedrosa , J. Peterson . Single carbon nanotube optical spectroscopy. ChemPhysChem , 577 - 582
    18. 18)
      • M.S. Fuhrer , H. Markoc . (2003) Single-walled carbon nanotubes for nanoelectronics.
    19. 19)
      • J.H. Lehman , C. Engtrakul , T. Gennett , A.C. Dillon . Single-wall carbon nanotube coating on a pyroelectric detector. Appl. Opt. , 4 , 483 - 488
    20. 20)
      • J.M. Xu . Highly ordered carbon nanotube arrays and IR detection. Infrared Phys. Technol. , 485 - 491
    21. 21)
      • M. Tzolov , B. Chang , A. Yin , D. Straus , J.M. Xu . Electronic transport in a controllably grown carbon nanotube–silicon heterojunction array. Phys. Rev. Lett. , 7 , 0755051 - 0755054
    22. 22)
      • J. Li , C. Papadopoulos , J. Xu . Nanoelectronics – growing Y-junction carbon nanotubes. Nature , 6759 , 253 - 254
    23. 23)
      • Bruker Optics: private communication.
    24. 24)
      • A. Rogalski . (2000) Infrared detectors.
    25. 25)
      • P.G. Collins , K. Bradley , M. Ishigami , A. Zettl . Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science , 5459 , 1801 - 1804
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds_20060105
Loading

Related content

content/journals/10.1049/iet-cds_20060105
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address