© The Institution of Engineering and Technology
A minimaldifference differential coefficients method is presented for low power and highspeed realisation of differentialcoefficientsbased finite impulse response filters. The conventional differential coefficients method (DCM) uses the difference between adjacent coefficients whereas we identify the coefficients that have the least difference between their magnitude values and use these minimal difference values to encode the differential coefficients. Our minimaldifference differential coefficients can be coded using fewer bits, which in turn reduces the number of full additions required for coefficient multiplication. By employing a differentialcoefficient partitioning algorithm and a pseudofloatingpoint representation, we show that the number of full adders and the net memory needed to implement the coefficient multipliers can be significantly reduced. The proposed method is combined with common subexpression elimination for further reduction of complexity. Experimental results show the average reductions of full adder, memory and energy dissipated achieved by our method over the DCM are 40, 35 and 50%, respectively.
References


1)

Y.C. Lim ,
S.R. Parker
.
FIR filter design over a discrete powersoftwo coefficient space.
IEEE Trans. Acoust. Speech Signal Process.
,
583 
591

2)

H. Samueli
.
An improved search algorithm for the design of multiplierless FIR filters with powersoftwo coefficients.
IEEE Trans. Circuits Syst.
,
7 ,
1044 
1047

3)

Y.C. Lim ,
S.R. Parker
.
Design of discrete coefficientvalue linear phase FIR filters with optimum normalized peak ripple magnitude.
IEEE Trans. Circuits Syst.
,
12 ,
1480 
1486

4)

C.L. Chen ,
A.N. Willson
.
A trellis search algorithm for the design of FIR filters with signedpowersoftwo coefficients.
IEEE Trans. Circuits Syst. II
,
1 ,
29 
39

5)

Mehendale, M., Sherlekar, S.D., Venkatesh, G.: `Synthesis of multiplierless FIR filters with minimum number of additions', Proc. 1995 IEEE/ACM Int. Conf. on ComputerAided Design, 1995, p. 668671.

6)

R.I. Hartley
.
Subexpression sharing in filters using canonic signeddigit multipliers.
IEEE Trans. Circuits Syst. II
,
10 ,
677 
688

7)

M. Yagyu ,
A. Nishihara ,
N. Fuji
.
Fast FIR digital filter structures using minimal number of adders and its application to filter design.
ICICE Trans. Fundam. Electron. Commun. Comput. Sci.
,
8 ,
1120 
1129

8)

R. Pasko ,
P. Schaumont ,
V. Derudder ,
S. Vernalde ,
D. Durackova
.
A new algorithm for elimination of common subexpressions.
IEEE Trans. Comput.Aided Des. Integ. Circuits Syst.
,
1 ,
58 
68

9)

Xu, F., Chang, C.H., Jong, C.C.: `Efficient algorithms for common subexpression elimination in digital filter design', Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, May 2004, 5, p. 137–140.

10)

A.P. Vinod ,
E.M. Lai ,
A.B. Premkuntar ,
C.T. Lau
.
FIR filter implementation by efficient sharing of horizontal and vertical common subexpressions.
Electron. Lett.
,
2 ,
251 
253

11)

N. Sankarayya ,
K. Roy ,
D. Bhattacharya
.
Algorithms for low power and high speed FIR filter realization using differential coefficients.
IEEE Trans. Circuits Syst. II
,
487 
497

12)

S. Ramprasad ,
N.R. Shanbhag ,
I.N. Hajj
.
Decorrelating (DECOR) transformations for lowpower digital filters.
IEEE Trans. Circuits Syst. II
,
6 ,
776 
788

13)

Erdogan, A.T., Arslan, T., Lai, R.: `Implementation of the decorrelating transformation for low power FIR filters', Proc. IEEE Workshop on Signal Processing Systems, 2004, p. 337–342.

14)

Lee, IH., Wu, CS., Wu, AY.: `Coefficient multiplierless FIR filter structure based on modified DECOR transformation', Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 1999, p. 1065–1068, vol. 2.

15)

T.S. Chang ,
Y.H. Chu ,
C.W. Jen
.
Lowpower FIR filter realization with differential coefficients and inputs.
IEEE Trans. Circuits Syst. II
,
137 
145

16)

Vinod, A.P., Lai, E.MK.: `Optimizing vertical common subexpression elimination using coefficientpartitioning for designing low complexity software radio channelizers', Proc. IEEE Int. Symp. on Circuits and Systems, 2005, p. 5429–5432.

17)

J.G. Proakis ,
D.G. Manolakis
.
(1996)
Digital signal processing principles, algorithms, and applications.

18)

Vinod, A.P., Premkumar, A.B., Lai, E.MK.: `An optimal entropy coding scheme for efficient implementation of pulse shaping FIR filters in digital receivers', Proc. IEEE Int. Symp on Circuits and Systems, 2003, 4, p. 229–232.

19)

T. Burd
.
(1994)
Lowpower CMOS library design methodology.

20)

Y.C. Lim ,
S.R. Parker
.
Discrete coefficient FIR digital filter design based on an LMS criteria.
IEEE Trans. Circuits Syst.
,
10 ,
723 
739
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcds_20050324
Related content
content/journals/10.1049/ietcds_20050324
pub_keyword,iet_inspecKeyword,pub_concept
6
6