access icon free High gain operational amplifier and a comparator with a-IGZO TFTs

This study presents a novel high gain operational amplifier (op-amp) and a comparator using n-type all enhancement amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The proposed op-amp employs regulated cascode topology in conjunction with capacitive bootstrap load, which enhances the gain to 159.87% (V/V) as compared to op-amp with bootstrapping load. In addition, common mode feedback is introduced in the circuit which improves the common-mode rejection ratio (CMRR) of the amplifier without hampering the output voltage swing. The proposed op-amp offers a voltage gain of 46.2 dB, phase margin of 67°, CMRR of 51.8 dB, unity gain frequency of 215 kHz and power consumption of 0.22 mW. Furthermore, a novel comparator circuit at a clock frequency of 50 kHz is reported. The power consumption of the circuit is 0.248 mW and it can discriminate a minimum voltage of 50 mV. The performance of the proposed circuits is demonstrated using an analytical model of a-IGZO in Cadence environment with a channel length of 20 µm at a supply voltage of 10 V. Further with the help of the circuits reported in this work, many sensing systems of practical importance can be developed, such as smart packaging and bio-medical wearable devices using flexible electronics.

Inspec keywords: low-power electronics; semiconductor device models; comparators (circuits); bootstrap circuits; operational amplifiers; indium compounds; amorphous semiconductors; thin film transistors

Other keywords: common-mode rejection ratio; voltage 10.0 V; gain 46.2 dB; sensing systems; regulated cascode topology; capacitive bootstrap load; op-amp; a-IGZO TFT; voltage 50.0 mV; power 0.248 mW; bootstrapping load; InGaZnO; voltage gain; frequency 50.0 kHz; common mode feedback; power consumption; frequency 215.0 kHz; output voltage swing; power 0.22 mW; size 20.0 mum; amorphous indium-gallium-zinc-oxide thin-film transistors; unity gain frequency; n-type all enhancement thin-film transistors; Cadence environment; comparator circuit; high gain operational amplifier; CMRR

Subjects: Electrical/electronic equipment (energy utilisation); Amplifiers; Other analogue circuits; Other field effect devices; Semiconductor device modelling, equivalent circuits, design and testing

References

    1. 1)
      • 13. Geng, D., Chen, Y.F., Mativenga, M., et al: ‘Touch sensor array with integrated drivers and comparator using a-IGZO TFTs’, IEEE Electron Device Lett., 2017, 38, (3), pp. 391394.
    2. 2)
      • 8. Rahaman, A., Chen, Y., Hasan, M.M., et al: ‘A high performance operational amplifier using coplanar dual gate a-IGZO TFTs’, IEEE J. Electron Devices Soc., 2019, 7, pp. 655661.
    3. 3)
      • 10. Bahubalindruni, P.G., Silva, B., Tavares, V.G., et al: ‘Analog circuits with high-gain topologies using a-GIZO TFTs on glass’, J. Disp. Technol., 2015, 11, (6), pp. 547553.
    4. 4)
      • 21. Razazi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill Edition, New Delhi, 2002), pp. 291313.
    5. 5)
      • 14. Conley, J.F.: ‘Instabilities in amorphous oxide semiconductor thin-film transistors’, IEEE Trans. Device Mater. Reliab., 2010, 10, (4), pp. 460475.
    6. 6)
      • 11. Zysset, C., Münzenrieder, N., Petti, L., et al: ‘IGZO TFT-based all-enhancement operational amplifier bent to a radius of 5 mm’, IEEE Electron Device Lett., 2013, 34, (11), pp. 13941396.
    7. 7)
      • 7. Tai, Y.-H., Chiu, H.-L., Chou, L.-S., et al: ‘Boosted gain of the differential amplifier using the second gate of the dual-gate a-IGZO TFTs’, IEEE Electron Device Lett.., 2012, 33, (12), pp. 17291731.
    8. 8)
      • 4. Xin, C., Chen, L., Li, T., et al: ‘Highly sensitive flexible pressure sensor by the integration of microstructured PDMS film with a-IGZO TFTs’, IEEE Electron Device Lett., 2018, 39, (7), pp. 10731076.
    9. 9)
      • 9. Kim, K., Choi, K., Lee, H.: ‘a-InGaZnO thin-film transistor-based operational amplifier for an adaptive DC–DC converter in display driving systems’, IEEE Trans. Electr. Dev., 2015, 62, (4), pp. 11891194.
    10. 10)
      • 12. Correia, A., Martins, R., Fortunato, E., et al: ‘Design of a robust general-purpose low-offset comparator based on IGZO thin-film transistors’. 2015 IEEE Int. Symp. on Circuits and Systems (ISCAS), Lisbon, Portugal, May 2015, pp. 261264.
    11. 11)
      • 5. Geng, D., Han, S., Seo, H., et al: ‘Piezoelectric pressure sensing device using top-gate effect of dual-gate a-IGZO TFT’, IEEE Sens. J., 2017, 17, (3), pp. 585586.
    12. 12)
      • 1. Nomura, K., Ohta, H., Takagi, A., et al: ‘Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors’, Nature, 2004, 432, (7016), pp. 488492.
    13. 13)
      • 19. Raja, J., Jang, K., Nguyen, C.P.T., et al: ‘Drain-induced barrier lowering and parasitic resistance induced instabilities in short-channel InSnZnO TFTs’, IEEE Electron Device Lett., 2014, 35, (7), pp. 756758.
    14. 14)
      • 18. Bahubalindruni, P.G., Kiazadeh, A., Sacchetti, A., et al: ‘Influence of channel length scaling on InGaZnO TFTs characteristics: current-gain cutoff frequency, intrinsic voltage-gain and on-resistance’, J. Disp. Technol., 2016, 12, (6), pp. 515518.
    15. 15)
      • 15. Sackinger, E., Guggenbuhl, W.: ‘A high-swing, high-impedance MOS cascode circuit’, IEEE J. Solid-State Circuits, 1990, 25, (1), pp. 289298.
    16. 16)
      • 3. Chen, Y., Geng, D., Jang, J.: ‘Integrated active-matrix capacitive sensor using a-IGZO TFTs for AMOLED’, IEEE J. Electron Devices Soc., 2018, 6, pp. 214218.
    17. 17)
      • 20. Arora, N.: ‘Mosfet modeling for VLSI simulation: theory and practice’ (World Scientific Publishing Company, Singapore, 2007), pp. 58.
    18. 18)
      • 22. Chen, Z., Xu, W., Wu, J., et al: ‘A new high-gain operational amplifier using transconductance-enhancement topology integrated with metal oxide TFTs’, IEEE J. Electron Devices Soc., 2018, 7, pp. 111117.
    19. 19)
      • 6. Münzenrieder, N., Petti, L., Zysset, C., et al: ‘Flexible a-IGZO TFT amplifier fabricated on a free standing polyimide foil operating at 1. 2 MHz while bent to a radius of 5 mm’. 2012 Int. Electron Devices Meeting, San Francisco, CA, USA, December 2012, pp. 9699.
    20. 20)
      • 23. Marien, H., Steyaert, M.S.J., Veenendaal, E.V., et al: ‘Analog building blocks for organic smart sensor systems in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circuits, 2012, 47, (7), pp. 17121720.
    21. 21)
      • 2. Kamiya, T., Nomura, K., Hosono, H.: ‘Present status of amorphous In–Ga–Zn–O thin-film transistors’, Sci. Technol. Adv. Mater., 2010, 11, (4), p. 044305.
    22. 22)
      • 16. Bahubalindruni, P.G., Tavares, V.G., Barquinha, P., et al: ‘Transparent current mirrors with a-GIZO TFTs: neural modeling, simulation and fabrication’, IEEE J. Display Tech., 2013, 9, (12), pp. 10011006.
    23. 23)
      • 24. Tarn, Y., Ku, P., Hsieh, H., et al: ‘An amorphous-silicon operational amplifier and its application to a 4-bit digital-to-analog converter’, IEEE J. Solid-State Circuits, 2010, 45, (5), pp. 10281035.
    24. 24)
      • 17. Bae, M., Lee, K.M., Cho, E.-S., et al: ‘Analytical current and capacitance models for amorphous indium-gallium-zinc-oxide thin-film transistors’, IEEE Trans. Electr. Dev., 2013, 60, (10), pp. 34653473.
    25. 25)
      • 25. Marien, H., Steyaert, M.S.J., Veenendaal, E.V., et al: ‘A fully integrated delta Sigma ADC in organic thin-film transistor technology on flexible plastic foil’, IEEE J. Solid-State Circuits, 2011, 46, (1), pp. 276284.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0286
Loading

Related content

content/journals/10.1049/iet-cds.2020.0286
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading