access icon free Compact low-noise power amplifier design and implementation for millimetre wave frequencies

In this paper, we have designed and realized a two-stage low-noise power amplifier (LNPA) with resistive feedback network targeting for Ka-band compact RF front-end applications. Featuring the characteristics of both low noise and high power at the same time, the LNPA is expected to be a possible one-chip replacement of power and low noise amplifiers integrated in a conventional transceiver/receiver (T/R) module. Such configuration features size compactness while reduces implementation complexity which is of crucial importance for integration in antenna arrays with large number of antenna elements. Implemented in 0.15-μm GaAs pseudomorphic high electron mobility transistor (pHEMT) technology, the LNPA, operating at 36–40 GHz, exhibits a peak gain of 15.96 dB, a minimum noise figure of 2.88 dB, a power consumption of 152 mW and a measured 1-dB compression output power of 14.92 dBm at 38 GHz, respectively. The LNPA also featured a very good linearity performance with a measured output third-order interception point (IP3) of 22.22 dBm at 38 GHz.

Inspec keywords: millimetre wave field effect transistors; field effect MIMIC; high electron mobility transistors; HEMT integrated circuits; III-V semiconductors; low noise amplifiers; MMIC power amplifiers; gallium arsenide; radio transceivers; CMOS integrated circuits

Other keywords: millimetre wave frequencies; output third-order interception point; antenna arrays; power 152.0 mW; transceiver-receiver module; size 0.15 mum; pHEMT technology; Ka-band; compact RF front-end; pseudomorphic high electron mobility transistor technology; LNPA; two-stage low-noise power amplifier; frequency 36.0 GHz to 40.0 GHz; resistive feedback network; compact low-noise power amplifier design; GaAs; antenna elements; compression output power; power consumption; implementation complexity; configuration features size compactness

Subjects: CMOS integrated circuits; Other field effect devices; Amplifiers; Solid-state microwave circuits and devices

References

    1. 1)
      • 16. Yargholi, M., Tarighat, A.P., Maghsoodi, M.: ‘Resistive feedback LNA for radio ultra-wideband receivers’. Proc. 2012 National Conf. on Communications (NCC), Kharagpur, India, 2012, pp. 14.
    2. 2)
      • 18. Leach, W.M. ‘On the calculation of noise in multistage amplifiers’, IEEE Trans. Circuits Syst. I Fund. Theory Appl., 1995, 42, (3), pp. 176178.
    3. 3)
      • 22. Chen, Z., Gao, H., Leenaerts, D. M. W., et al: ‘A 16–43 GHz low-noise amplifer with 2.5–4.0 dB noise figure’. Proc. 2016 IEEE Asian Solid-State Circuits Conf. (A-SSCC), Toyama, Japan, 2016, pp. 349352.
    4. 4)
      • 19. Keysight Technologies: ‘Noise source operating and service manual’, https://www.keysight.com/main/gated.jspx?lb=1&gatedId=1000002290–1:epsg:man&cc=TW&lc=cht&parentContId=375206&parentContType=pt&parentNid=-536902744.536883696&fileType=VIEWABLE.
    5. 5)
      • 9. Ma, Q., Leenaerts, D., Mahmoudi, R.: ‘A 30 GHz 2 dB NF low noise amplifier for Ka-band applications’. Proc. 2012 IEEE Radio Frequency Integrated Circuits Symp., Montreal, QC, USA, 2012, pp. 2528.
    6. 6)
      • 10. Qin, P., Xue, Q.: ‘Compact wideband LNA with gain and input matching bandwidth extensions by transformer’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (7), pp. 657659.
    7. 7)
      • 21. Ma, Q., Leenaerts, D., Mahmoudi, R.: ‘a 30 GHz 2 dB NF low noise amplifier for Ka-band applications’. Proc. 2012 IEEE Radio Frequency Integr. Circuits Symp., Montreal, QC, Canada, 2012, pp. 2528.
    8. 8)
      • 11. Kobayashi, K.W., Chen, Y., Smorchkova, I., et al: ‘A cool, sub-0.2 dB noise figure Gan HEMT power amplifier with 2-watt output power’, IEEE J. Solid-State Circuits, 2009, 44, (10), pp. 26482654.
    9. 9)
      • 1. Federal Communications Commission: ‘FCC online table of frequency allocations’, https://transition.fcc.gov/oet/spectrum/table/fcctable.pdf, accessed 13 February 2020.
    10. 10)
      • 14. Pucel, R.A., Struble, W., Hallgren, R., et al: ‘A general noise de-embedding procedure for packaged two-port linear active devices’, IEEE Trans. Microw. Theory Tech., 1992, 40, (11), pp. 20132024.
    11. 11)
      • 12. Statz, H., Haus, H.A., Pucel, R.A.: ‘Noise characteristics of gallium arsenide field-effect transistors’, IEEE Trans. Microw. Theory Tech., 1974, 21, (9), pp. 549562.
    12. 12)
      • 3. Kang, D., Kim, J., Min, B., et al: ‘Single and four-element Ka-band transmit/receive phased-array silicon RFICs with 5-bit amplitude and phase control’, IEEE Trans. Microw. Theory Tech., 2009, 57, (12), pp. 35343543.
    13. 13)
      • 13. Pucel, R.A., Masse, D.J., Krumm, C.F.: ‘Noise performance of gallium arsenide field-effect transistors’, IEEE J. Solid-State Circuits, 1976, 11, (2), pp. 243255.
    14. 14)
      • 8. Sato, M., Niida, Y., Kamada, Y., et al: ‘Q-Band InAlGan/Gan LNA using current reuse topology’. Proc. 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, CA, USA, 2016, pp. 14.
    15. 15)
      • 2. Shakib, S., Elkholy, M., Dunworth, J., et al: ‘A wideband 28-GHz transmit–receive front-End for 5G handset phased arrays in 40-nm CMOS’, IEEE Trans. Microw. Theory Tech., 2019, 67, (7), pp. 29462963.
    16. 16)
      • 24. Ramzan, R., Zafar, F., Arshad, S., et alFigure of merit for narrowband, wideband and multiband LNAs’, Int. J. Electron., 2012, 99, (11), pp. 16031610.
    17. 17)
      • 4. Gharibdoust, K., Mousavi, N., Kalantari, M., et al: ‘A fully integrated 0.18-μm CMOS transceiver chip for X-band phased-array systems’, IEEE Trans. Microw. Theory Tech., 2012, 60, (7), pp. 21922202.
    18. 18)
      • 5. Ellinger, F.: ‘26–42 GHz SOI CMOS low noise amplifier’, IEEE J. Solid-State Circuits, 2004, 39, (3), pp. 522528.
    19. 19)
      • 28. Nguyen, D.P., Pham, T., Pham, A.: ‘A 28-GHz symmetrical doherty power amplifier using stacked-FET cells’, IEEE Trans. Microw. Theory Tech., 2018, 66, (6), pp. 26282637.
    20. 20)
      • 15. Wu, C.H., Kao, H.L., Chang, Y.C., et al: ‘A wideband 0.18μm CMOS LNA with RC-feedback topology for UWB applications’. Proc. 2009 Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conf., Toulouse, France, 2009, pp. 14.
    21. 21)
      • 6. Masuda, S., Ohki, T., Hirose, T.: ‘Very compact high-gain broadband low-noise amplifier in Inp HEMT technology’, IEEE Trans. Microw. Theory Tech., 2006, 54, (12), pp. 45654571.
    22. 22)
      • 23. Deal, W.R., Biedenbender, M., Liu, P., et al: ‘Design and analysis of broadband dual-gate balanced low-noise amplifiers’, IEEE J. Solid-State Circuits, 2007, 42, (10), pp. 21072115.
    23. 23)
      • 25. Hosseinzadeh, N., Medi, A.: ‘Wideband 5 W Ka-band GaAs power amplifier’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (8), pp. 622624.
    24. 24)
      • 27. Alizadeh, A., Frounchi, M., Medi, A.: ‘On design of wideband compact-size Ka/Q-band high-power amplifiers’, IEEE Trans. Microw. Theory Tech., 2016, 64, (6), pp. 18311842.
    25. 25)
      • 20. Nikandish, G., Yousefi, A., Kalantari, M., et al: ‘A broadband multistage LNA with bandwidth and linearity enhancement’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (10), pp. 834836.
    26. 26)
      • 7. Chou, Y., Chiong, C., Wang, H.: ‘A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process’. Proc. 2016 IEEE Int. Symp. on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 2006, pp. 13.
    27. 27)
      • 26. Aust, M.V., Sharma, A.K., Fordham, O., et al: ‘A 2.8-W Q-band high-efficiency power amplifier’, IEEE J. Solid-State Circuits, 2006, 41, (10), pp. 22412247.
    28. 28)
      • 17. Perumana, B.G., Zhan, J.C., Taylor, S.S., et al: ‘Resistive-feedback CMOS low-noise amplifiers for multiband applications’, IEEE Trans. Microw. Theory Tech., 2008, 56, (5), pp. 12181225.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0274
Loading

Related content

content/journals/10.1049/iet-cds.2020.0274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading