Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Bandwidth controlled weakly connected MEMS resonators based narrowband filter

Electrical tuning of bandwidth is critical for microelectromechanical system (MEMS) resonator-based narrowband filters especially at ultra-high frequency ranges and beyond. The resonance frequency of MEMS resonators is highly susceptible to fabrication process uncertainties and very small fabrication variations could result in significant shift in their resonance frequency. Although, disk resonators are the most acceptable candidates for implementing of resonators at GHz frequencies, according to their high stiffness, electrical tuning of these resonators and consequently the resulting filters is almost impossible. This study presents a novel tuning method for low velocity through anchor coupled MEMS radial contour mode disk resonators based on the coupling beam's stiffness tuning using the piezoelectric effect. As the results of this method, high bandwidth tuning ratio as 1:1.25 is achieved due to changing the tuning DC voltage from 0 to 20 V. This impressive result for a narrowband filter with 450 kHz of bandwidth is achieved due to changing the stiffness of low stiff coupling beam which is much easier to control in comparison with extremely high stiffness disk resonators. Various simulation results, as well as analytical works, verify the proposed approach.

References

    1. 1)
      • 36. Hafizi-Moori, S., Cretu, E.: ‘Weakly-coupled resonators in capacitive readout circuits’, IEEE Trans. Circuits Syst I, 2014, 62, (2), pp. 337346.
    2. 2)
      • 41. Johnson, R.A.: ‘Mechanical filters in electronics’, in: ‘CRC handbook of electrical filters' (John Wiley & Sons Inc., USA, 1983), p. 377.
    3. 3)
      • 45. Ikeda, T.: ‘Fundamentals of piezoelectricity’ (Oxford University Press, UK, 1996).
    4. 4)
      • 47. Yim, W.M., Paff, R.J.: ‘Thermal expansion of AlN, sapphire, and silicon’, J. Appl. Phys., 1974, 45, (3), pp. 14561457.
    5. 5)
      • 18. Baghelani, M., Ghavifekr, H.B., Ebrahimi, A.: ‘Precise analytical evaluation of the ring shape anchored contour mode disk resonator for constructing a low noise UHF pierce oscillator’, Microsyst. Technol., 2013, 19, (7), pp. 10871095.
    6. 6)
      • 3. Nguyen, C.T.C.: ‘MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications’, IEEE Commun. Mag., 2013, 51, (4), pp. 110119.
    7. 7)
      • 11. Nguyen, C.C.: ‘Vibrating RF MEMS for next generation wireless applications’. Proc. of the IEEE 2004 Custom Integrated Circuits Conf. (IEEE Cat. No. 04CH37571), Orlando, Florida, USA, October 2004, pp. 257264.
    8. 8)
      • 42. Baghelani, M.: ‘Anchor loss calculation for ring shape anchored contour mode disk resonators’, Int. J. Acoust. Vib., 2018, 23, (3), pp. 321326.
    9. 9)
      • 19. Islam, M.S., Singh, S.K., Xereas, G., et al: ‘A digitally programmable CMOS feedback ASIC for highly stable MEMS-referenced oscillators’, IEEE T. Circuits Syst. I., 2019, 66, (11), pp. 41584171.
    10. 10)
      • 5. Liu, X., Nejdel, A., Palm, M., et al: ‘A 65 nm CMOS wideband radio receiver with $\Delta\Sigma $-based A/D-converting channel-select filters’, IEEE J. Solid-St. Circuits, 2016, 51, (7), pp. 15661578.
    11. 11)
      • 50. Hajhashemi, M.S., Amini, A., Bahreyni, B.: ‘A micromechanical bandpass filter with adjustable bandwidth and bidirectional control of centre frequency’, Sensor. Actuat. A Phys., 2012, 187, pp. 1015.
    12. 12)
      • 20. Baghelani, M., Ghavifekr, H.B., Ebrahimi, A.: ‘MEMS based oscillator for UHF applications with automatic amplitude control’, Microelectr. J., 2013, 44, (4), pp. 292300.
    13. 13)
      • 40. Bannon, F.D., Clark, J.R., Nguyen, C.C.: ‘High-Q HF microelectromechanical filters’, IEEE J. Solid-St. Circuits, 2000, 35, (4), pp. 512526.
    14. 14)
      • 12. Piazza, G., Stephanou, P.J., Pisano, A. P.: ‘Aln contour-mode vibrating RF MEMS for next generation wireless communications’. 2006 European Solid-State Device Research Conf., Montreux, Switzerland, September 2006, pp. 6164.
    15. 15)
      • 17. Li, M.H., Chen, C.Y., Chen, W.C., et al: ‘A vertically coupled MEMS resonator pair for oscillator applications’, J. Microelectromech. S., 2015, 24, (3), pp. 528530.
    16. 16)
      • 8. Wei, M., Avila, A., Rivera, I., et al: ‘Zno on nickel RF micromechanical resonators for monolithic wireless communication applications’, J. Micromech. Microeng., 2017, 27, (5), p. 055006.
    17. 17)
      • 9. Liu, C., Froemel, J., Chen, J., et al: ‘Laterally vibrating MEMS resonant vacuum sensor based on cavity-SOI process for evaluation of wide range of sealed cavity pressure’, Microsyst. Technol., 2019, 25, (2), pp. 487497.
    18. 18)
      • 38. Ozgurluk, A., Akgul, M., Nguyen, C.T.C.: ‘RF channel-select micromechanical disk filters—part I: design’, IEEE Trans. Ultrason. Ferroelectr., 2018, 66, (1), pp. 192217.
    19. 19)
      • 49. Pourkamali, S., Ayazi, F.: ‘Electrically coupled MEMS bandpass filters: part I: with coupling element’, Sensor. Actuat. A Phys., 2005, 122, (2), pp. 307316.
    20. 20)
      • 33. Gong, S., Piazza, G., ‘Design and analysis of lithium–niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering’, IEEE Trans. Microw. Theory, 2012, 61, (1), pp. 403414.
    21. 21)
      • 32. Li, S.S., Lin, Y.W., Xie, Y., et al: ‘Small percent bandwidth design of a 423 MHz notch-coupled micromechanical mixler’. IEEE Ultrasonics Symp., Vol. 2, Rotterdam, Netherlands, September 2005, pp. 12951298.
    22. 22)
      • 25. Wang, J., Butler, J.E., Feygelson, T., et al: ‘1.51 GHz nanocrystalline diamond micromechanical disk resonator with material-mismatched isolating support’. 17th IEEE Int. Conf. on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, Maastricht, Netherlands, 2004, pp. 641644.
    23. 23)
      • 29. Baghelani, M., Ghavifekr, H.B., Ebrahimi, A.: ‘Analysis and suppression of spurious modes of the ring shape anchored RF MEMS contour mode disk resonator’, Microsyst. Technol., 2011, 17, (10–11), pp. 15991609.
    24. 24)
      • 2. Puvaneswari, M., Sidek, O: ‘Wideband analog front-end for multistandard software defined radio receiver’. 2004 IEEE 15th Int. Symp. on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No. 04TH8754), Barcelona, Spain, September 2004, pp. 19371941.
    25. 25)
      • 26. Zuo, C., Van der Spiegel, J., Piazza, G.: ‘1.05-GHz CMOS oscillator based on lateral-field-excited piezoelectric AlN contour-mode MEMS resonators’, IEEE T. Ultrason., Ferroelectr., 2009, 57, (1), pp. 8287.
    26. 26)
      • 6. Baghelani, M.: ‘Effects of thermoelastic damping on the operation of the ring shape anchored contour mode disk resonators’, J. Therm. Stresses, 2015, 38, (12), pp. 13871394.
    27. 27)
      • 43. Habib, A., Shelke, A., Vogel, M., et al: ‘Quantitative ultrasonic characterization of c-axis oriented polycrystalline AlN thin film for smart device application’, Acta Acust. United Acust., 2015, 101, (4), pp. 675683.
    28. 28)
      • 15. Ilyas, S., Jaber, N., Younis, M.I.: ‘A coupled resonator for highly tuneable and amplified mixer/filter’, IEEE T. Electron Dev., 2017, 64, (6), pp. 26592664.
    29. 29)
      • 23. Baghelani, M., Ebrahimi, A., Ghavifekr, H.B.: ‘Design of a novel MEMS resonator based neuromorphic oscillator’, AEU-Int. J. Electron. Commun., 2014, 68, (11), pp. 10911096.
    30. 30)
      • 35. Baghelani, M.: ‘Design of a multi-frequency resonator for UHF multiband communication applications’, Microsyst. Technol., 2016, 22, (10), pp. 25432548.
    31. 31)
      • 24. Wang, J., Ren, Z., Nguyen, C.C.: ‘1.156 GHz self-aligned vibrating micromechanical disk resonator’, IEEE T. Ultrason., Ferrelectr., 2004, 51, (12), pp. 16071628.
    32. 32)
      • 44. Song, S., Chen, D., Wang, H., et al: ‘Shear mode bulk acoustic resonator based on inclined c-axis AlN film for monitoring of human hemostatic parameters’, Micromachines, 2018, 9, (10), p. 501.
    33. 33)
      • 46. Kumar, M., Roul, B., Bhat, T.N., et al: ‘Improved growth of GaN layers on ultra-thin silicon nitride/Si (1 1 1) by RF-MBE’, Mater. Res. Bull., 2010, 45, (11), pp. 15811585.
    34. 34)
      • 14. Chen, F., Brotz, J., Arslan, U., et al: ‘CMOS-MEMS resonant RF mixer-filters’. 18th IEEE Int. Conf. on Micro Electro Mechanical Systems, (MEMS 2005), Miami Beach, FL, USA, January 2005, pp. 2427.
    35. 35)
      • 39. Akgul, M., Ozgurluk, A., Nguyen, C.T.C.: ‘RF channel-select micromechanical disk filters—part II’, IEEE Trans. Ultrason. Ferroelectr., 2018, 66, (1), pp. 218235.
    36. 36)
      • 27. Morankar, A., Patrikar, R.: ‘Dual frequency MEMS resonator through mixed electrical and mechanical coupling scheme’, IET Circuits Devices Syst., 2017, 12, (1), pp. 8893.
    37. 37)
      • 21. Baghelani, M., Ebrahimi, A., Ghavifekr, H.B.: ‘Design of RF MEMS based oscillatory neural network for ultra-high speed associative memories’, Neural Process. Lett., 2014, 40, (1), pp. 93102.
    38. 38)
      • 37. Wang, K., Nguyen, C.C.: ‘High-order medium frequency micromechanical electronic filters’, J. Microelectromech. Syst., 1999, 8, (4), pp. 534556.
    39. 39)
      • 48. Singh, J., Ranwa, S., Akhtar, J., et al: ‘Growth of residual stress-free Zno films on SiO2/Si substrate at room temperature for MEMS devices’, AIP Adv., 2015, 5, (6), p. 067140.
    40. 40)
      • 52. Hajjaj, A.Z., Hafiz, M.A., Younis, M.I.: ‘Mode coupling and nonlinear resonances of MEMS arch resonators for bandpass filters’, Sci. Rep-UK, 2017, 7, p. 41820.
    41. 41)
      • 1. Bagheri, R., Mirzaei, A., Heidari, M.E., et al: ‘Software-defined radio receiver: dream to reality’, IEEE Commun. Mag., 2006, 44, (8), pp. 111118.
    42. 42)
      • 28. Baghelani, M., Ghavifekr, H.B.: ‘Ring shape anchored RF MEMS contour mode disk resonator for UHF communication applications’, Microsyst. Technol., 2010, 16, (12), pp. 21232130.
    43. 43)
      • 13. Nguyen, C.T.C.: ‘Vibrating RF MEMS for low power wireless communications’. Proc. of the 2001 Int. MEMS Workshop (iMEMS01), Singapore, July 2006, pp. 2134.
    44. 44)
      • 7. Lee, H.G., Park, J.Y., Bu, J.U., et al: ‘MEMS technology for advanced telecommunication applications’, Frontiers in Electronics: Future Chips, 2002, pp. 927.
    45. 45)
      • 10. Baghelani, M., Lan, D., Wang, J.: ‘Design of spurious mode-free elliptical ring resonators’, Microsyst. Technol., 2017, 23, (8), pp. 36353644.
    46. 46)
      • 51. Cao, Y., Torres, D., Wang, T., et al: ‘Enabling tunable micromechanical bandpass filters through phase-change materials’, Smart Mater. Struct., 2017, 26, (8), p. 085032.
    47. 47)
      • 22. Hoppensteadt, F.C., Izhikevich, E.M.: ‘Synchronization of MEMS resonators and mechanical neurocomputing’, IEEE T. Circuits Syst. I, 2001, 48, (2), pp. 133138.
    48. 48)
      • 31. Chandrahalim, H., Weinstein, D., Cheow, L.F., et al: ‘Channel-select micromechanical filters using high-K dielectrically transduced MEMS resonators’. 19th IEEE Int. Conf. on Micro Electro Mechanical Systems, Istanbul, Turkey, January 2006, pp. 894897.
    49. 49)
      • 34. Baghelani, M., Ghavifekr, H.B., Ebrahimi, A.: ‘A new approach for the design of low velocity coupling for ring shape anchored contour mode disk resonators’, Microsyst. Technol., 2012, 18, (12), pp. 20032016.
    50. 50)
      • 16. Wong, A.C., Nguyen, C.C.: ‘Micromechanical mixer-filters (‘ mixlers’)’, J. Microelectromech. S., 2004, 13, (1), pp. 100112.
    51. 51)
      • 30. Shalaby, M.M., Abdelmoneum, M.A., Saitou, K.: ‘Design of spring coupling for high-Q high-frequency MEMS filters for wireless applications’, IEEE Trans. Ind. Electron., 2009, 56, (4), pp. 10221030.
    52. 52)
      • 4. Gangarajaiah, R., Abdulaziz, M., Sjöland, H., et al: ‘A digitally assisted nonlinearity mitigation system for tuneable channel select filters’, IEEE T. Circuits II, 2015, 63, (1), pp. 6973.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0216
Loading

Related content

content/journals/10.1049/iet-cds.2020.0216
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address