access icon free Split gated silicon nanotube FET for bio-sensing applications

A split gated silicon nanotube field-effect transistor (FET) biosensor has been proposed for the label free detection of the biomolecules for the first time in literature. The sensitivity of the sensing device has been analysed considering the on current (I ON) and the threshold voltage (V th) variation. Sub-threshold regime has been considered here to detect the charged/neutral biomolecules. Extensive simulations have been done using the SILVACO ATLAS. Sensitivity analysis has been carried out by considering half-filled and full-filled nanogaps with the neutral or charged biomolecules inside the cavity. Significant sensitivity and excellent reduction in short-channel effects has been observed in proposed biosensor.

Inspec keywords: biosensors; field effect transistors; semiconductor device models; sensitivity analysis; silicon; molecular biophysics; elemental semiconductors

Other keywords: charged biomolecules; half-filled nanogaps; threshold voltage variation; Si; label free detection; split gate silicon nanotube FET biosensor; full-filled nanogaps; biosensing applications; sensing device; neutral biomolecules; sensitivity analysis; SILVACO ATLAS; silicon nanotube field-effect transistor biosensor; short-channel effects; subthreshold regime

Subjects: Biosensors; Other field effect devices; Insulated gate field effect transistors; Molecular biophysics; Biosensors; Semiconductor device modelling, equivalent circuits, design and testing

References

    1. 1)
      • 8. Busse, S., Scheumann, V., Menges, B., et al: ‘Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods’, Biosens. Bioelectron., 2002, 17, (8), pp. 704710.
    2. 2)
      • 6. Chanda, M., Dey, P., De, S., et al: ‘Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection’, Superlattices Microstruct., 2015, 86, pp. 446455.
    3. 3)
      • 4. Im, H., Huang, X.-J., Gu, B., et al: ‘A dielectric-modulated field-effect transistor for biosensing’, Nat. Nanotechnol., 2007, 2, pp. 430434.
    4. 4)
      • 15. Gao, X.P.A., Zheng, G., Lieber, C.M.: ‘Subthreshold regime has the optimal sensitivity for nanowire FET biosensors’, Nano Lett., 2010, 10, (2), pp. 547552.
    5. 5)
      • 9. Li, L., Li, C., Zhang, Z., et al: ‘On the dielectric ‘constant’ of proteins: smooth dielectric function for macromolecular modeling and its implementation in DelPhi’, J. Chem. Theory Computat., 2013, 9, pp. 21262136.
    6. 6)
      • 18. Yifei, L., Haining, Z.: ‘Binding of streptavidin to surface-attached biotin with different spacer thicknesses’, J. Wuhan Univ. Technol.-Mater. Sci., 2015, 30, (6), pp. 13041309.
    7. 7)
      • 2. Chanda, M., Das, R., Kundu, A., et al: ‘Analytical modeling of label free biosensor using charge plasma based gate underlap dielectric modulated MOSFET’, Superlattices Microstruct., 2017, 104, pp. 451460.
    8. 8)
      • 11. Fahad, H.M., Smith, C.E., Rojas, J.P., et al: ‘Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits’, Nano Lett., 2011, 11, (10), pp. 43934399.
    9. 9)
      • 14. Silvaco: ‘Silvaco ATLAS manual device simulation software’, 2016, pp. 2-422-45.
    10. 10)
      • 16. Ahn, J.H., Choi, S.-J., Im, M., et al: ‘Charge and dielectric effects of biomolecules on electrical characteristics of nanowire FET biosensors’, Appl. Phys. Lett., 2017, 111, (11), p. 113701.
    11. 11)
      • 19. Tekleab, D., Tran, H.H., Sleight, J.W., et al: ‘SILICON nanotube MOSFET’, US 8,866,266 B2, 2014.
    12. 12)
      • 7. Shan, C., Wang, Y., Bao, M.T.: ‘A charge-plasma-based transistor with induced graded channel for enhanced analog performance’, IEEE Trans. Electron Dev., 2016, 63, (6), pp. 22752281.
    13. 13)
      • 12. Singh, A., Pandey, C.K., Chaudhury, S., et al: ‘Effect of strain in silicon nanotube FET devices for low power applications’, Eur. Phys. J.: Appl. Phys., 2019, 85, (1), p. 10101.
    14. 14)
      • 17. Chandan, B.V., Nigam, K., Sharma, D.: ‘Junctionless based dielectric modulated electrically doped tunnel FET based biosensor for label-free detection’, Micro Nano Lett., 2018, 13, (4), pp. 452456.
    15. 15)
      • 13. Tekleab, D.: ‘Device performance of silicon nanotube field effect transistor’, IEEE Electron Device Lett., 2014, 35, (5), pp. 506508.
    16. 16)
      • 1. Kim, C.-H., Jung, C., Park, H.-G., et al: ‘Novel dielectric modulated field-effect transistor for label-free DNA detection’, Biochip J., 2008, 2, (2), pp. 127134.
    17. 17)
      • 5. Kannan, N., Kumar, M.J.: ‘Charge-modulated underlap I-MOS transistor as a label-free biosensor: a simulation study’, IEEE Trans. Electron Devices, 2015, 62, (8), pp. 26452651.
    18. 18)
      • 10. Bibi, F., Villain, M., Guillaume, C., et al: ‘A review: origins of the dielectric properties of proteins and potential development as bio-sensors’, Ssensors, 2016, 16, (8), p. 1232.
    19. 19)
      • 3. Narang, R., Saxena, M., Gupta, R.S., et al: ‘Dielectric modulated tunnel field effect transistor – a biomolecule sensor’, IEEE Electron Device Lett., 2012, 33, (2), pp. 266268.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0208
Loading

Related content

content/journals/10.1049/iet-cds.2020.0208
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading