Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Open-circuit voltage decay: moving to a flexible method of characterisation

Open-circuit voltage decay (OCVD) is a method to characterise minority carrier effective lifetime (). It is non-destructive, simple and low-cost. It has been mainly used in silicon p-n junctions. is not only a very important parameter to optimise device design but also to supervise process steps. It is not the only parameter we can obtain by OCVD. Due to the intrinsic space charge region capacitance of a p-n junction, the doping level of the lowest-doped region () and built-in potential () are extractable. Moreover, it is also possible to obtain the shunt resistance () value when it has a significant effect on the p-n junction behaviour. The authors first applied the well-established one-diode model in a transient regime to simulate OCVD signal. In a second step, they used an optimisation algorithm to fit the experimental curve of a silicon diode to extract , , and . These values were compared to those obtained from CV and IV. Results are promising and demonstrate for the first time, the flexibility of the OCVD method. It opens up the perspective for the development of add-on features of the method and for measuring short lifetime.

References

    1. 1)
      • 2. Schroder, D.K.: ‘Semiconductor material and device characterization’ (John Wiley & Sons, USA, 2006, 3rd edn.).
    2. 2)
      • 4. Yablonovitch, E., Gmitter, T.J.: ‘A contactless minority lifetime probe of heterostructures, surfaces, interfaces and bulk wafers’, Solid-State Electron., 1992, 35, (3), pp. 261267, Available at: http://www.sciencedirect.com/science/article/pii/003811019290230A.
    3. 3)
      • 1. Luque-López, A., Hegedus, S. (Eds): ‘Handbook of photovoltaic science and engineering’ (John Wiley & Sons, UK, 2011, 2nd edn.).
    4. 4)
      • 26. Masetti, G., Severi, M., Solmi, S.: ‘Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon’, IEEE Trans. Electron Devices, 1983, 30, (7), pp. 764769.
    5. 5)
      • 17. Ariel, P.C., Cappelletti, M.A., y Blanca, E.L.P.: ‘A computerized method for carrier lifetime measurement in PN junctions at high and low-level injection’. 2010 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA), Montevideo, Uruguay, 2010, pp. 8793.
    6. 6)
      • 25. SciPy: ‘Scipy.integrate.LSODA – SciPy v1.3.0 reference guide’, 2019, [Online]. Available at: https://docs.SciPy.org/doc/SciPy/reference/generated/SciPy.integrate.LSODA.html#SciPy.integrate.LSODA.
    7. 7)
      • 27. Van-Opdorp, C.: ‘Evaluation of doping profiles from capacitance measurements’, Solid-State Electron., 1968, 11, (4), pp. 397406, Available at: http://www.sciencedirect.com/science/article/pii/0038110168900208.
    8. 8)
      • 29. SciPy: ‘Minimize(method = ‘Nelder-Mead’) – SciPy v1.3.0 reference guide’, 2019, [Online]. Available at: https://docs.SciPy.org/doc/SciPy/reference/optimize.minimize-neldermead.html.
    9. 9)
      • 30. SciPy: ‘Scipy.integrate.odeint – SciPy v1.3.0 reference guide’, 2019, [Online]. Available at: https://docs.SciPy.org/doc/SciPy/reference/generated/SciPy.integrate.odeint.html.
    10. 10)
      • 21. Espinet-Gonzalez, P., Rey-Stolle, I., Ochoa, M., et al: ‘Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells’, Prog. Photovolt., Res. Appl., 2015, 23, (7), pp. 874882, Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/pip.2501.
    11. 11)
      • 7. Mahan, J.E., Barnes, D.L.: ‘Depletion layer effects in the open-circuit-voltage-decay lifetime measurement’, Solid-State Electron., 1981, 24, (10), pp. 989994, Available at: http://www.sciencedirect.com/science/article/pii/0038110181901246.
    12. 12)
      • 11. Mahan, J.E., Ekstedt, T.W., Frank, R.I., et al: ‘Measurement of minority carrier lifetime in solar cells from photo-induced open-circuit voltage decay’, IEEE Trans. Electron Devices, 1979, 26, (5), pp. 733739.
    13. 13)
      • 13. Caussanel, M., Canals, A., Dixit, S.K., et al: ‘Doping-type dependence of damage in silicon diodes exposed to X-ray, proton, and He+ irradiations’, IEEE Trans. Nucl. Sci., 2007, 54, (6), pp. 19251930, Available at: http://ieeexplore.ieee.org/document/4395007/.
    14. 14)
      • 20. Ochoa, M., Algora, C., Espinet-González, P., et al: ‘3-D modeling of perimeter recombination in GaAs diodes and its influence on concentrator solar cells’, Sol. Energy Mater. Sol. Cells, 2014, 120, pp. 4858, Available at: https://linkinghub.elsevier.com/retrieve/pii/S092702481300408X.
    15. 15)
      • 18. Sze, S.M., Ng, K.K.: ‘Physics of semiconductor devices’ (John Wiley & Sons, USA, 2007, 3rd edn.).
    16. 16)
      • 24. SciPy: ‘Minimize(method = ‘TNC’) – SciPy v1.3.0 reference guide’, 2019, [Online]. Available at: https://docs.SciPy.org/doc/SciPy/reference/optimize.minimize-tnc.html#optimize-minimize-tnc.
    17. 17)
      • 10. Lederhandler, S.R., Giacoletto, L.J.: ‘Measurement of minority carrier lifetime and surface effects in junction devices’, Proc. IRE, 1955, 43, (4), pp. 477483, Available at: http://ieeexplore.ieee.org/abstract/document/4055436/.
    18. 18)
      • 5. Sinton, R.A., Cuevas, A., Stuckings, M.: ‘Quasi-steady-state photoconductance, a new method for solar cell material and device characterization’. Photovoltaic Specialists Conf., 1996, Conf. Record of the Twenty Fifth IEEE, Washington, DC, USA, 1996, pp. 457460, Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=564042.
    19. 19)
      • 6. Ahrenkiel, R.K.: ‘Measurement of minority-carrier lifetime by time-resolved photoluminescence’, Solid-State Electron., 1992, 35, (3), pp. 239250.
    20. 20)
      • 9. Gossick, B.R.: ‘On the transient behavior of semiconductor rectifiers’, J. Appl. Phys., 1955, 26, (11), pp. 13561365, Available at: http://aip.scitation.org/doi/10.1063/1.1721908.
    21. 21)
      • 28. McIntosh, K.R.: ‘Lumps, humps and bumps: three detrimental effects in the current-voltage curve of silicon solar cells’, 2001, p. 190.
    22. 22)
      • 23. Colinge, J.P., Van de Wiele, F.: ‘Physique des dispositifs semi-conducteurs’, 1996.
    23. 23)
      • 3. Schroder, D.K.: ‘Carrier lifetimes in silicon’, IEEE Trans. Electron Devices, 1997, 44, (1), pp. 160170.
    24. 24)
      • 12. Green, M.A.: ‘Minority carrier lifetimes using compensated differental open circuit voltage decay’, Solid-State Electron., 1983, 26, (11), pp. 11171122.
    25. 25)
      • 15. Lemaire, A.: ‘Mesure par OCVD de la durée de vie des porteurs minoritaires dans des jonctions en GaSb, en GaAs et en Si: simulations et expérimentations’. Université de Perpignan Via Domitia. Laboratoire PROMES-CNRS, rambla de la thermodynamique 66000 Perpignan, 2019.
    26. 26)
      • 14. Bellone, S., Licciardo, G.D.: ‘An analog circuit for accurate OCVD measurements’, IEEE Trans. Instrum. Meas., 2008, 57, (6), pp. 11121117, Available at: http://ieeexplore.ieee.org/document/4450600/.
    27. 27)
      • 16. Deshmukh, M.P., Kumar, R.A., Nagaraju, J.: ‘Measurement of solar cell ac parameters using the time domain technique’, Rev. Sci. Instrum., 2004, 75, (8), pp. 27322735.
    28. 28)
      • 32. Chawla, B.R., Gummel, H.K.: ‘Transition region capacitance of diffused p-n junctions’, IEEE Trans. Electron Devices, 1971, 18, (3), pp. 178195, Available at: https://ieeexplore.ieee.org/abstract/document/1476494.
    29. 29)
      • 19. Castañer, L., Vilamajo, E., Llaberia, J., et al: ‘Investigations of the OCVD transients in solar cells’, J. Phys. D: Appl. Phys., 1981, 14, pp. 18671876, Available at: http://iopscience.iop.org/article/10.1088/0022-3727/14/10/019/pdf.
    30. 30)
      • 8. Sinton, R.A., Cuevas, A.: ‘A QSS open circuit voltage method for solar cell characterization’. European PV Solar Energy Conf., Glasgow, UK, 2000, Available at: http://www.sintoninstruments.com/PDFs/sinton-epvsc16-pcd.pdf.
    31. 31)
      • 31. Levinshtein, M., Rumyantsev, S., Shur, M.: inLevinshtein, M., Rumyantsev, S., Shur, M.(Eds): ‘III-V materials mobility (GaAs: Ch. 4, p. 84; GaP: Ch. 5, p. 111; GaSb: Ch. 6, p. 132; InAs: Ch. 7, p. 153; InP: Ch. 8, p. 175; InSb: Ch. 9, p. 198)’, ‘Handbook series on semiconductor parameters’, vol. 1 ser. Handbook series (World Scientific, 1996).
    32. 32)
      • 22. Python.: ‘Welcome to Python’, 2019, [Online]. Available at: https://www.python.org/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0123
Loading

Related content

content/journals/10.1049/iet-cds.2020.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address