access icon free Floating memristor and inverse memristor emulation configurations with electronic/resistance controllability

This study presents two configurations to realise the behaviour of a floating memristor and an inverse memristor. The modified version of VDCC (voltage differencing current conveyor) termed as MVDCC (modified VDCC) is used to develop the presented emulators. The floating memristor emulator uses a single MVDCC and two grounded passive elements while the configuration of floating inverse memristor emulator is based on two MVDCCs, two grounded resistances and single grounded capacitance. The behaviour of both the circuits can be controlled through applied bias voltage as well as the employed grounded resistances. Both the presented circuits do not employ any external analogue multiplier circuit/IC, which can be considered as the most notable feature of these circuits. This study also describes the mathematical properties of memristor and inverse memristor taking both symmetrical and non-symmetrical models into account. PSPICE simulation tool is used to verify the working of realised emulation circuits using 0.18 μm CMOS process technology. The implementations of realised emulators, employing commercial ICs like AD844, CA3080 and LM13700, have also been presented and validated.

Inspec keywords: SPICE; electronic engineering computing; integrated circuit modelling; memristors; current conveyors; CMOS integrated circuits

Other keywords: AD844 commercial IC; size 0.18 mum; CA3080 commercial IC; voltage differencing current conveyor; applied bias voltage; resistance controllability; emulation circuits; electronic controllability; grounded resistances; inverse memristor emulator; single MVDCC; grounded passive elements; floating memristor emulator; grounded capacitance; single grounded capacitance; LM13700 commercial IC; inverse memristor emulation configurations; PSPICE simulation tool; symmetrical models; CMOS process technology; modified VDCC; nonsymmetrical models

Subjects: Electronic engineering computing; Resistors; Active filters and other active networks; CMOS integrated circuits; Amplifiers

References

    1. 1)
      • 1. Chua, L.O.: ‘Memristor-the missing circuit element’, IEEE Trans. Circuit Theory, 1971, 18, (5), pp. 507519.
    2. 2)
      • 7. Biolek, Z., Biolek, D.: ‘How can the hysteresis loop of the ideal memristor Be pinched?’, IEEE Trans. Circuits Syst. – II: Express Briefs, 2014, 61, (7), pp. 491495.
    3. 3)
      • 6. Biolek, Z., Biolek, D., Biolková, V.: ‘Computation of the area of memristor pinched hysteresis loop’, IEEE Trans. Circuits Syst. – II: Express Briefs, 2012, 59, (9), pp. 607611.
    4. 4)
      • 10. Ranjan, R., Surendra, S., Raushan, S.: ‘High frequency floating memristor emulator and its experimental results’, IET Circuits Devices Syst., 2018, 13, (3), pp. 112.
    5. 5)
      • 5. Biolek, D., Biolek, Z., Biolkova, V.: ‘Interpreting area of pinched memristor hysteresis loop’, 3D. Circuits and Systems.
    6. 6)
      • 21. Ranjan, R.K., Rani, N., Pal, R., et al: ‘Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application’, Microelectron. J., 2017, 60, pp. 119128.
    7. 7)
      • 17. Sozen, H., Cam, U.: ‘Electronically tunable memristor emulator circuit’, Analog Integr. Circuits Signal Process, 2016, 89, pp. 655663.
    8. 8)
      • 23. Biolek, D., Biolek, Z., Biolkova, V., et al: ‘About v-i pinched hysteresis of some non-memristive systems’, Math. Probl. Eng., 2018, 2018, pp. 110.
    9. 9)
      • 4. Biolek, Z., Biolek, D., Biolkova, V.: ‘Analytical computation of the area of pinched hysteresis loops of ideal mem-elements’, Radioengineering, 2013, 22, (1), pp. 132135.
    10. 10)
      • 19. Sanchez-Lopez, C., Mendoza-Lopez, J., Carrasco-Aguilar, M.A., et al: ‘A floating analog memristor emulator circuit’, IEEE. Trans. Circuits. Syst. II. Express. Briefs., 2014, 61, pp. 309313.
    11. 11)
      • 15. Abuelmaatti, M.T., Khalifa, Z.J.: ‘A new floating memristor emulator and its application in frequency-to-voltage conversion’, Analog Integr. Circuits Signal Process, 2016, 86, pp. 141147.
    12. 12)
      • 12. Yesil, A., Babacan, Y., Kacar, F.: ‘A new DDCC based memristor emulator circuit and its applications’, Microelectron. J., 2014, 45, pp. 282287.
    13. 13)
      • 25. Prasad, D., Bhaskar, D.R., Srivastava, M.: ‘New single VDCC-based explicit current-mode SRCO employing all grounded passive components’, Electron. J., 2014, 18, (2), pp. 8188.
    14. 14)
      • 14. Gul, F., Babacan, Y.: ‘A novel OTA based circuit model corroborated by an experimental semiconductor memristor’, Microelectron. Eng., 2018, 194, pp. 5669.
    15. 15)
      • 24. Biolek, D., Senani, R., Biolkova, V., et al: ‘Active elements for analog signal processing: classification, review and new proposals’, Radioengineering, 2008, 17, (4), pp. 1532.
    16. 16)
      • 9. Mohanty, S.P.: ‘Memristor: from basics to deployment’, IEEE Potentials, 2013, 32, (3), pp. 3439.
    17. 17)
      • 16. Yesil, A.: ‘Floating memristor employing single MO-OTA with hard switching behaviour’, J. Circuits Syst. Comput., 2019, 28, p. 1950026.
    18. 18)
      • 22. Li, Z., Zeng, Y., Ma, M.: ‘A novel floating memristor emulator with minimal components’, Act. Passive Electron. Compon., 2017, 2017, pp. 112.
    19. 19)
      • 26. Srivastava, M., Prasad, D.: ‘VDCC based dual-mode quadrature sinusoidal oscillator with current/voltage outputs at appropriate impedance level’, Adv. Electr. Electron. Eng. (Czech Republic), 2016, 14, (2), pp. 168177.
    20. 20)
      • 20. Yesil, A., Babacan, Y., Kacar, F.: ‘A new floating memristor based on CBTA with grounded capacitors’, J. Circuits Syst. Comput., 2019, 28, p.1950217.
    21. 21)
      • 18. Petrović, P.B.: ‘Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA’, Analog Integr. Circuits Signal Process., 2018, 96, pp. 417433.
    22. 22)
      • 8. Zheng, G., Mohanty, S.P., Kougianos, E., et al: ‘Polynomial metamodel integrated Verilog-AMS for memristor-based mixed-signal system design’. Proc. IEEE 56th Int. Midwest Symp. on Circuits and Systems (MWSCAS), Columbus, OH, 2013, pp. 916919.
    23. 23)
      • 3. Chua, L.: ‘Everything you wish to know about memristors are afraid to ask’, Radioengineering, 2015, 24, (2), pp. 319368.
    24. 24)
      • 2. Strukov, D.B., Snider, G.S., Stewart, D.R., et al: ‘The missing memristor found’, Nature, 2008, 453, pp. 8083.
    25. 25)
      • 27. Prasad, D., Srivastava, M., Ahmad, A., et al: ‘Novel VDCC based low-pass and high-pass ladder filters’. IEEE-INDICON-2015, New Delhi, India, 2015, pp. 14.
    26. 26)
      • 11. Yu, D., Iu, H.H.C., Fitch, A.L., et al: ‘A floating memristor emulator based relaxation oscillator’, IEEE Trans Circuits Syst. I, 2014, 61, pp. 28882896.
    27. 27)
      • 13. Cam, Z.G., Sedef, H.: ‘A new floating memristance simulator circuit based on second generation current conveyor’, J. Circuits Syst. Comput., 2017, 26, p. 1750029.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0106
Loading

Related content

content/journals/10.1049/iet-cds.2020.0106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading