access icon free Developed wireless sensor network to supervise the essential parameters in greenhouses for internet of things applications

Recently, the wireless sensor networks have rapidly emerged into agriculture and greenhouse because of owing many advantages than the traditional methods. However, some subjects such as cost and power are being brought up as a controversial issue. This study presents a developed wireless sensor network based on a proposed algorithm to improve tomato crop in a greenhouse. The developed sensor nodes, which own low-power consumption and also low-cost, monitor parameters like temperature, humidity, CO, and light intensity. The users define the minimum and maximum setpoints for the sensors to make an appropriate condition in the greenhouse. Also, the developed system was equipped with irrigation management that works based on time and date that maintain optimum water in the soil. The obtained results reveal that the amount of the tomato crops increases 30% than traditional methods after benefiting the developed system as well as the greenhouse experiences a decrease in consuming methane gas, water, and electricity as 30, 24 and 10% separately, in comparison to the traditional methods.

Inspec keywords: wireless sensor networks; crops; irrigation; greenhouses

Other keywords: greenhouses; wireless sensor networks; tomato crop; agriculture; sensor nodes; low-power consumption; Internet of Things applications; irrigation management

Subjects: Wireless sensor networks; Agriculture

References

    1. 1)
      • 22. Joris, L., Dupont, F., Laurent, P., et al: ‘An autonomous SigFox wireless sensor node for environmental monitoring’, IEEE Sensors Letters, 2019, 3, (7), pp. 0104.
    2. 2)
      • 29. http://www.maxmcarter.com/annunciator/PIR-sensor-rebuild.html.
    3. 3)
      • 27. Abbasi-Kesbi, R., Nikfarjam, A.: ‘Denoising MEMS accelerometer sensors based on L2-norm total variation algorithm’, Electron. Lett., 2017, 53, pp. 322324.
    4. 4)
      • 8. Connolly, E.J., Pham, H.T.M., Groeneweg, J., et al: ‘Relative humidity sensors using porous SiC membranes and Al electrodes’, Sens. Actuators, B, Chem., 2004, 100, (1), pp. 216220.
    5. 5)
      • 10. Garcia-Sanchez, A.J., Garcia-Sanchez, F., Garcia-Haro, J.: ‘Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops’, Comput. Electron. Agric., 2011, 75, (2), pp. 288303.
    6. 6)
      • 15. Baumüller, H.: ‘Agricultural innovation and service delivery through mobile phones’, Analyses in Kenya (Faculty of Agriculture, University of Bonn, Bonn, 2015).
    7. 7)
      • 5. Jawad, H.M., Nordin, R., Gharghan, S.K., et al: ‘Energy-efficient wireless sensor networks for precision agriculture: a review’, Sensors, 2017, 17, (8), p. 1781.
    8. 8)
      • 20. Johansson, O., Andersson, G.: ‘Smart Greenhouse: A microcontroller based architecture for autonomous and remote control’. B.s. thesis, Halmstad University, School of Information Technology, 2020, pp. 171.
    9. 9)
      • 3. Abbasi-Kesbi, R., Nikfarjam, A., Memarzadeh-Tehran, H.: ‘A patient-centric sensory system for in-home rehabilitation’, IEEE Sens. J., 2016, 17, (2), pp. 524533.
    10. 10)
      • 13. Sabri, N., Aljunid, S.A., Salim, M.S., et al: ‘Wireless sensor network wave propagation in vegetation’, Recent trends in physics of material science and technology, (Loughborough University, Leicestershire, UK, 2015), pp. 283298.
    11. 11)
      • 28. https://www.parallax.com/sites/default/files/downloads/27920-Humidity-Sensor-Datasheet.pdf.
    12. 12)
      • 2. Valipour, A., Abbasi-Kesbi, R.: ‘A heartbeat and respiration rate sensor based on phonocardiogram for healthcare applications’. 2017 Iranian Conf. on Electrical Engineering (ICEE), Tehran, Iran, 2017, pp. 4548.
    13. 13)
      • 30. Nazi, A., Raj, M., Di Francesco, M., et al: ‘Efficient communications in wireless sensor networks based on biological robustness’. Int. Conf. on Distributed Computing in Sensor Systems (DCOSS), Washington, DC, USA, 2016, pp. 161168.
    14. 14)
      • 16. Shinghal, D., Srivastava, N.: ‘Wireless sensor networks in agriculture: for potato farming’, Neelam, Wireless Sensor Networks in Agriculture: For Potato Farming, 22 September 2017.
    15. 15)
      • 18. Rao, A., Shao, H., Yang, X.: ‘The design and implementation of smart agricultural management platform based on UAV and wireless sensor network’. 2019 IEEE 2nd Int. Conf. on Electronics Technology (ICET), Chengdu, China, 2019, pp. 248252.
    16. 16)
      • 4. Abbasi-Kesbi, R., Nikfarjam, A.: ‘A miniature sensor system for precise hand position monitoring’, IEEE Sens. J., 2018, 18, (6), pp. 25772584.
    17. 17)
      • 7. Pierce, F.J., Elliott, T.V.: ‘Regional and on-farm wireless sensor networks for agricultural systems in eastern Washington’, Comput. Electron. Agric., 2008, 61, (1), pp. 3243.
    18. 18)
      • 14. Lea-Cox, J.D.: ‘Using wireless sensor networks for precisionIrrigation scheduling’,Problems, perspectives and challenges of agricultural water management (InTech Press, Rijeka, Croatia, 2012), pp. 233258.
    19. 19)
      • 11. Wark, T., Corke, P., Sikka, P., et al: ‘Transforming agriculture through pervasive wireless sensor networks’, IEEE Pervasive Comput., 2007, 6, (2), pp. 5057.
    20. 20)
      • 19. Polese, D., Maiolo, L., Pazzini, L., et al: ‘Wireless sensor networks and flexible electronics as innovative solution for smart greenhouse monitoring in long-term space missions’. 5th Int. Workshop on Metrology for AeroSpace (MetroAeroSpace), Torino, Italy, 2019, pp. 223227.
    21. 21)
      • 12. Gawali, Y.G., Chaudhari, D.S.: ‘Wireless sensor network based monitoring for agricultural system’, International Journal of Science, Engineering and Technology Research (IJSETR), 2016, 5, (8), pp. 15.
    22. 22)
      • 31. Nazi, A., Raj, M., Di Francesco, M., et al: ‘Robust deployment of wireless sensor networks using gene regulatory networks’. Int. Conf. on Distributed Computing and Networking (ICDCN), Mumbai, India, 2013, pp. 192207.
    23. 23)
      • 23. https://www.futurlec.com/HM-TR.shtml.
    24. 24)
      • 33. El-Kader, S.M.A., Mohammad El-Basioni, B.M.: ‘Precision farming solution in Egypt using the wireless sensor network technology’, Egypt. Inform. J., 2013, 14, (3), pp. 221233.
    25. 25)
      • 25. Abbasi-Kesbi, R., Memarzadeh-Tehran, H., Deen, M.J.: ‘A technique to estimate the human reaction time based on visual perception’, Healthc. Technol. Lett., 2017, 4, (2), pp. 7377.
    26. 26)
      • 24. Abbasi-kesbi, R., Nikfarjam, A.: ‘A mini wearable wireless sensor for rehabilitation applications’. 2015 3rd RSI Int. Conf. on Robotics and Mechatronics (ICROM), Tehran, Iran, 2015, pp. 618622.
    27. 27)
      • 17. Langendoen, K., Baggio, A., Visser, O.: ‘Murphy loves potatoes: experiences from a pilot sensor network deployment in precision agriculture’. IEEE IPDPS 20th Int. on Parallel and Distributed Processing Symp., Rhodes Island, 2006, p. 8.
    28. 28)
      • 1. Abbasi-Kesbi, R., Nikfarjam, A., Hezaveh, A.A.: ‘Developed wearable miniature sensor to diagnose initial perturbations of cardiorespiratory system’, Healthc. Technol. Lett., 2018, 5, (6), pp. 231235.
    29. 29)
      • 9. Baggio, A.: ‘Wireless sensor networks in precision agriculture’. ACM Workshop on Real-World Wireless Sensor Networks (REALWSN 2005), Stockholm, Sweden, 2005, pp. 15671576.
    30. 30)
      • 26. Abbasi-Kesbi, R., Valipour, A., Imani, K.: ‘Cardiorespiratory system monitoring using a developed acoustic sensor’, Healthc. Technol. Lett., 2018, 1, (5), pp. 712.
    31. 31)
      • 21. Hidayat, M.S., Nugroho, A.P., Sutiarso, L., et al: ‘Development of environmental monitoring systems based on LoRa with cloud integration for rural area’. IOP Conf. Series: Earth and Environmental Science, South Sulawesi, 2019, vol. 355, no. 1, p. 012010.
    32. 32)
      • 6. Ruiz-Garcia, L., Lunadei, L., Barreiro, P., et al: ‘A review of wireless sensor technologies and applications in agriculture and food industry: state of the art and current trends’, Sensors, 2009, 9, (6), pp. 47284750.
    33. 33)
      • 32. Gui, L., Yang, M., Yu, H., et al: ‘A Cramer-Rao lower bound of CSI-based indoor localization’, IEEE Trans. Veh. Technol., 2017, 67, (3), pp. 28142818.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0085
Loading

Related content

content/journals/10.1049/iet-cds.2020.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading