Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Noise analysis of reflection-type microwave RTD amplifier

This study reports an analysis of noise figures (NFs) in a reflection-type microwave amplifier using resonant tunnelling diodes (RTDs). The minimum NF for the RTD amplifier based on 0.9 μm InP process technology, featuring a power gain (S 21) of 10.4 dB and a dc-power consumption of 133 μW at a centre frequency of 5.7 GHz, is measured to be 5.08 dB at a bias voltage of 0.355 V. The estimated NF characteristic based on an equation of the noise factor caused by the shot noise (F SH) and a simulation of the noise factor generated by the thermal noise (F TH) closely matches the measured NF characteristic, in the high-gain bias range of 0.32–0.38 V and near the centre frequency. It is found that the measured NF value of 5.08 dB originates mostly from the F SH of 1.88 and the F TH of 2.02. Additionally, the effect of the RTD parameters on the achieved NF is investigated, indicating that the negative resistance (R D) magnitude had a dominant effect on the NF by changing the F TH as well as the F SH.

References

    1. 1)
      • 13. Kindner, C., Mehdi, I., East, J.R., et al: ‘Power and stability limitations of resonant tunneling diodes’, IEEE Trans. Microw. Theory Tech., 1990, 38, (7), pp. 864872.
    2. 2)
      • 19. Zaini, J., Hameau, F., Taris, T., et al: ‘A tunable ultra low power inductors low noise amplifier exploiting body biasing of 28 nm FDSOI technology’. IEEE/ACM Int. Symp. on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, July 2017, pp. 16.
    3. 3)
      • 21. Gardner, P., Paul, D. K.: ‘Aspects of the design of low noise, negative resistance, reflection mode transistor amplifiers’, IEEE Trans. Microw. Theory Tech., 1991, 39, (11), pp. 18691875.
    4. 4)
      • 12. Schulman, J.N., De Los Santos, H.J., Chow, D.H.: ‘Physics-based RTD current-voltage equation’, IEEE Electron Device Lett.., 1996, 17, (5), pp. 220222.
    5. 5)
      • 4. Cidronali, A., Nair, V., Collodi, G., et al: ‘MMIC applications of heterostructure interband tunnel devices’, IEEE Trans. Microw. Theory Tech., 2003, 51, (4), pp. 13511367.
    6. 6)
      • 3. Chang, C., Chen, J., Wang, Y.: ‘A fully integrated 5 GHz low-voltage LNA using forward body bias technology’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (3), pp. 176178.
    7. 7)
      • 17. Chen, Y., Lin, Y.H., Chiong, C.C., et al: ‘A 0.38 V, sub-mW 5 GHz low noise amplifier with 43.6% bandwidth for next generation radio astronomical receivers in 90 nm CMOS’. IEEE MTT-S Int. Microwave Symp. Digest, Philadelphia, USA, June 2018, pp. 14911494.
    8. 8)
      • 5. Lee, J., Lee, J., Yang, K.: ‘Reflection-type RTD low-power amplifier with deep sub-mW DC power consumption’, IEEE Microw. Wirel. Compon. Lett., 2014, 24, (8), pp. 551553.
    9. 9)
      • 9. Brown, E.R.: ‘Analytic model of shot noise in double-barrier resonant tunneling diodes’, IEEE Trans. Electron Devices, 1992, 39, (12), pp. 26862693.
    10. 10)
      • 10. Feist, W.: ‘Noise performance and stability of a hybrid-coupled tunnel diode amplifier’, Proc. IRE, 1961, 49, (5), p. 975.
    11. 11)
      • 2. Wu, D., Huang, R., Wong, W., et al: ‘A 0.4 V low noise amplifier using forward body bias technology for 5 GHz application’, IEEE Microw. Wirel. Compon. Lett., 2007, 17, (7), pp. 543545.
    12. 12)
      • 16. Hsieh, C.L., Wu, M.H., Cheng, J.H., et al: ‘A 0.6-V 36-μW 5-GHz LNA using a low-voltage and gain-enhancement architecture’. IEEE MTT-S Int. Microwave Symp. Digest, Seattle, USA, June 2013, pp. 13.
    13. 13)
      • 18. Parvizi, M., Allidina, K., El-Gamal, M.N.: ‘A sub-mW, ultra-low-voltage, wideband low-noise amplifier design technique’, IEEE Trans. VLSI Syst., 2015, 23, (6), pp. 11111121.
    14. 14)
      • 6. Lee, J., Yang, K.: ‘RF power analysis on 5.8 GHz low-power amplifier using resonant tunneling diodes’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (1), pp. 6163.
    15. 15)
      • 15. Linten, D., Aspernyr, L., Jearnsaksiri, W., et al: ‘Low-power 5 GHz LNA and VCO in 90 nm RF CMOS’. IEEE Symp. VLSI Circuits Technical Digest, Honolulu, USA, June 2004, pp. 372375.
    16. 16)
      • 20. Ando, Y., Cappy, A.: ‘Proposal of low-noise amplifier utilizing resonant tunneling transistors’, IEEE Trans. Electron Devices, 1998, 45, (1), pp. 3135.
    17. 17)
      • 8. Lee, J., Lee, J., Kim, M., et al: ‘Negative-differential-conductance RTD amplifier MMIC with record FOMs of gain-to-DC power ratio and noise figure’. Proc. IEEE Int. Conf. Indium Phosphide Related Materials (IPRM), Montpellier, France, May 2014, pp. 12.
    18. 18)
      • 7. Griffin, J.D., Durgin, G.D.: ‘Multipath fading measurements for multi-antenna backscatter RFID at 5.8 GHz’. IEEE Int. Conf. on RFID, Orlando, USA, April 2009, pp. 322329.
    19. 19)
      • 23. Vogel, R.: ‘Analysis and design of lumped- and lumped-distributed element directional couplers for MIC and MMIC applications’, IEEE Trans. Microw. Theory Tech., 1992, 40, (2), pp. 253262.
    20. 20)
      • 1. Martins, R., Lourenco, N., Horta, , et al: ‘Many-objective sizing optimization of a class-C/D VCO for ultralow-power Iot and ultralow-phase-noise cellular applications’, IEEE Trans. VLSI Syst., 2019, 27, (1), pp. 6982.
    21. 21)
      • 14. Hsieh, H., Lu, L.: ‘Design of ultra-low-voltage RF frontends with complementary current-reused architectures’, IEEE Trans. Microw. Theory Tech., 2007, 55, (7), pp. 14451458.
    22. 22)
      • 11. Penfield, P.: ‘Noise in negative-resistance amplifiers’, IRE Trans. Circuit Theory, 1960, 7, (2), pp. 166170.
    23. 23)
      • 22. Gardner, P., Paul, D.K.: ‘Optimum noise measure configurations for transistor negative resistance amplifiers’, IEEE Trans. Microw. Theory Tech., 1997, 45, (5), pp. 580586.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0078
Loading

Related content

content/journals/10.1049/iet-cds.2020.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address