Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fine resolution delay tuning method to improve the linearity of an unbalanced time-to-digital converter on a Xilinx FPGA

In this study, a method for fine adjustment of Xilinx field programmable gate array (FPGA) routing delays is proposed and applied to improve the linearity of an unbalanced multi-measurement time-to-digital converter (TDC). The delay control method increases load capacitances of interconnect points of switch matrices by small amounts using additional connections to unused interconnects in the FPGA fabric. The novel delay control method uses the tool command language (TCL) scripting feature available in the Xilinx Vivado tool to automatically add wires into a fully placed and routed design. A total of 61 additional wires were successfully and automatically added to reduce the differential and integral non-linearities of the target TDC from 0.51 and −0.54 LSB to 0.05 and 0.06 LSB, respectively (reduction factors of 10.2 and 9) for an LSB equal to 333 ps.

References

    1. 1)
      • 2. Gersbach, M., Maruyama, Y., Trimananda, R., et al: ‘A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology’, IEEE J. Solid-State Circuits, 2012, 47, (6), pp. 13941407.
    2. 2)
      • 29. Sano, T.U.Y., Horii, Y., Ikeno, M., et al: ‘Subnanosecond time-to-digital converter implemented in a kintex-7 FPGA’, Nucl. Instrum. Methods Phys., 2017, 874, pp. 5056.
    3. 3)
      • 20. Berrima, S., Blaquière, Y., Savaria, Y.: ‘Sub-ps resolution programmable delays implemented in a Xilinx FPGA’. Midwest Symp. on Circuits and Systems (MWSCAS), Boston, MA, USA, 2017, pp. 918921.
    4. 4)
      • 14. Cheng, Z., Zheng, X., Deen, M.J., et al: ‘Recent developments and design challenges of high-performance ring oscillator CMOS time-to-digital converters’, IEEE Trans. Electron Devices, 2016, 63, (1), pp. 235251.
    5. 5)
      • 19. Majzoobi, M., Kharaya, A., Koushanfar, F., et al: ‘Automated design, implementation, and evaluation of arbiter-based PUF on FPGA using programmable delay lines’, 2014, Available at https://eprint.iacr.org/2014/639.pdf.
    6. 6)
      • 16. Berrima, S., Blaquiere, Y., Savaria, Y.: ‘A multi-measurements RO-TDC implemented in a Xilinx field programmable gate array’. Proc. - IEEE Int. Symp. on Circuits and Systems, Baltimore, MD, USA, 2017, pp. 14.
    7. 7)
      • 8. Tsai, M.T., Huang, S.Y., Tsai, K.H., et al: ‘Monitoring the delay of long interconnects via distributed TDC’. Proc. - Int. Test Conf., Anaheim, CA, USA, 2015, pp. 19.
    8. 8)
      • 23. Xilinx.: ‘7 series FPGAs memory resources (UG473)’, 2019.
    9. 9)
      • 26. Guiping Cao, N.D., Xia, H.: ‘An 18-ps TDC using timing adjustment and bin realignment methods in a cyclone-IV FPGA’, Rev. Sci. Instrum., 2018, 89, (5), 054707, pp. 18.
    10. 10)
      • 21. Xilinx.: ‘7 series DSP48E1 slice (UG479)’, 2018.
    11. 11)
      • 17. Bergeron, E., Feeley, M., Daigneault, M. A., et al: ‘Using dynamic reconfiguration to implement high-resolution programmable delays on an FPGA’. IEEE North-East Workshop on Circuits and Systems and TAISA Conf., NEWCAS-TAISA, 2008, pp. 265268.
    12. 12)
      • 4. Yuan, F.: ‘CMOS time-to-digital converters for mixed-mode signal processing’, J. Eng., 2014, 2014, (4), pp. 140154.
    13. 13)
      • 1. van Dam, H.T., Borghi, G., Seifert, S., et al: ‘Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation’, Phys. Med. Biol., 2013, 58, (10), pp. 32433257.
    14. 14)
      • 24. Xilinx.: ‘Vivado design suite tcl command reference guide (UG835)’, 2018.
    15. 15)
      • 12. Shen, Q., Liu, S., Qi, B., et al: ‘A 1.7 ps equivalent bin size and 4.2 ps RMS FPGA TDC based on multichain measurements averaging method’, IEEE Trans. Nucl. Sci., 2015, 62, (3), pp. 947954.
    16. 16)
      • 18. Xilinx.: ‘Vivado design suite tutorial, partial reconfiguration (ug947)’, 2018.
    17. 17)
      • 7. Kim, K., Kim, Y. H., Yu, W., et al: ‘A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier’, IEEE J. Solid-State Circuits, 2013, 48, (4), pp. 10091017.
    18. 18)
      • 28. Chen, H., Li, D.D.-U.: ‘Multichannel, low nonlinearity time-to-digital converters based on 20 and 28 nm FPGAs’, IEEE Trans. Ind. Electron., 2019, 66, (4), pp. 32653274.
    19. 19)
      • 9. Wu, J.: ‘Several key issues on implementing delay line based TDCs using FPGAs’, IEEE Trans. Nucl. Sci., 2010, 57, (3), pp. 15431548.
    20. 20)
      • 25. Ruffoni, M., Bogliolo, A.: ‘Direct measures of path delays on commercial FPGA chips’. Proc. - 6th IEEE Workshop on Signal Propagation on Interconnects, SPI, Pisa, Italy, 2002, pp. 157159.
    21. 21)
      • 13. Chen, H., Zhang, Y., Li, D.D.-U.: ‘A low nonlinearity, missing-code free time-to-digital converter based on 28-nm FPGAs with embedded bin-width calibrations’, IEEE Trans. Instrum. Meas., 2017, 66, (7), pp. 19121921.
    22. 22)
      • 30. Liu, Y.W.C.: ‘A 128-channel, 710 M samples/second, and less than 10 ps RMS resolution time-to-digital converter implemented in a kintex-7 FPGA’, IEEE Trans. Nucl. Sci., 2015, 62, (3), pp. 773783.
    23. 23)
      • 27. Chen, Y.: ‘Run-time calibration scheme for the implementation of a robust field-programmable gate array–based time-to-digital converter’, Int. J. Circuit Theory Appl., 2019, 47, (1), pp. 1931.
    24. 24)
      • 22. Xilinx.: ‘7 series FPGAs configurable logic block (UG474)’, 2014.
    25. 25)
      • 31. Majzoobi, M., Koushanfar, F., Devadas, S.: ‘FPGA-based true random number generation using circuit metastability with adaptive feedback control’. Cryptographic Hardware and Embedded Systems – CHES, Nara, Japan, 2011, pp. 1732.
    26. 26)
      • 6. Wang, H., Dai, F.F., Wang, H.: ‘A reconfigurable vernier time-to-digital converter with 2-D spiral comparator array and second-order Δ Σ linearization’, IEEE J. Solid-State Circuits, 2018, 53, (3), pp. 738749.
    27. 27)
      • 15. Choi, K.C., Lee, S.W., Lee, B.C., et al: ‘A time-to-digital converter based on a multiphase reference clock and a binary counter with a novel sampling error corrector’, IEEE Trans. Circuits Syst. II Express Briefs, 2012, 59, (3), pp. 143147.
    28. 28)
      • 11. Won, J.Y., Il Kwon, S., Yoon, H.S., et al: ‘Dual-phase tapped-delay-line time-to-digital converter with on-the-fly calibration implemented in 40 nm FPGA’, IEEE Trans. Biomed. Circuits Syst., 2015, 10, (1), pp. 231242.
    29. 29)
      • 10. Swann, B.K., Blalock, B.J., Clonts, L.G., et al: ‘A 100-ps time-resolution CMOS time-to-digital converter for positron emission tomography imaging applications’, IEEE J. Solid-State Circuits, 2004, 39, (11), pp. 18391852.
    30. 30)
      • 3. Wu, J., Zhang, Y., Zhao, R., et al: ‘Low-jitter DLL applied for two-segment TDC’, IET Circuits, Devices Syst., 2018, 12, (1), pp. 1724.
    31. 31)
      • 5. Wang, Y., Cao, Q., Liu, C.: ‘A multi-chain merged tapped delay line for high precision time-to-digital converters in FPGAs’, IEEE Trans. Circuits Syst. II Express Briefs, 2017, 65, (1), pp. 96100.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0026
Loading

Related content

content/journals/10.1049/iet-cds.2020.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address