Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Single and double-gate based AlGaN/GaN MOS-HEMTs for the design of low-noise amplifiers: a comparative study

In this study, a 60nm gate length double-gate AlGaN/GaN/AlGaN metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT) is proposed and different electrical characteristics, such as DC, small-signal, radio-frequency (RF) and high-frequency noise performances of the devices are characterised through TCAD device simulations. The results of double-gate MOS-HEMT are compared with the TCAD simulation results as well as with available experimental data of single-gate AlGaN/GaN MOS-HEMT having a similar gate length available from the literature. It is observed that the double-gate AlGaN/GaN/AlGaN MOS-HEMT shows good sub-threshold slope, improved ON current, short-channel effect immunity, improved RF and noise performance. A look-up table-based Verilog-A model is developed for both devices and the models are incorporated into the Cadence EDA tool to utilise the proposed device in circuit simulations. The Verilog-A model is applied to design a 1–20GHz wideband feedback cascode low-noise amplifier (LNA). Performance variability of LNA due to single- and double-gate MOS-HEMT is also investigated.

References

    1. 1)
      • 34. Vendelin, G.D., Pavio, A.M., Rohde, U.L.: ‘Microwave circuit design using linear and nonlinear techniques’ (A John Wiley & Sons, Inc. Publication, New Jersey, 2005, 2nd edn.), pp. 375379.
    2. 2)
      • 21. Medjdoub, F., Sarazin, N., Tordjman, M., et al: ‘Characteristics of Al2O3/AlInN/GaN MOS-HEMT’, Electron. Lett., 2007, 43, (12), pp. 691692.
    3. 3)
      • 27. Majumdar, S., Bag, A., Biswas, D.: ‘Implementation of Veriloga GaN HEMT model to design RF switch’, Microw. Opt. Technol. Lett., 2015, 57, pp. 17651768.
    4. 4)
      • 32. Khan, M., Heo, J.W., Kim, H.S., et al: ‘Comparison of recessed gate-head structures on normally-off AlGan/Gan high-electron-mobility transistor performance’, J. Nanosci. Nanotechnol., 2014, 14, pp. 81418147.
    5. 5)
      • 13. Adak, S., Swain, S.K., Rahaman, H., et al: ‘Impact of gate engineering in enhancement mode n++ GaN/InAlN/AlN/GaN HEMTs’, Superlattices Microstruct., 2016, 100, pp. 306314.
    6. 6)
      • 30. Jie, H., Chak-Wah, T., Kei-May, L.: ‘Lg = 100 nm T-shaped gate AlGaN/GaN HEMTs on Si substrates with non-planar source/drain regrowth of highly-doped n + -GaN layer by MOCVD’, Chin. Phys. B, 2014, 23, (12), pp. 128102.
    7. 7)
      • 16. Wichmann, N., Duszynski, I., Wallart, X., et al: ‘Fabrication and characterization of 100-nm In0.53Al0.47As − In0.52Ga0.48As double-gate HEMTs with two separate gate controls’, IEEE Electron Device Lett., 2005, 26, (9), pp. 601603.
    8. 8)
      • 6. Sun, H., Marti, D., Tirelli, S., et al: ‘Millimeter-wave GaN-based HEMT development at ETH-Zürich’, Int. J. Microw. Wirel. Technol., 2010, 2, (1), pp. 3338.
    9. 9)
      • 8. Wu, T.Y., Hu, C.C., Sze, P.W., et al: ‘AlGaN/GaN metal oxide semiconductor high electron mobility transistor using liquid-phase deposited strontium titanate’, Solid-State Electron., 2013, 82, pp. 15.
    10. 10)
      • 2. Hu, Q., Hu, B., Gu, C., et al:Improved current collapse in recessed AlGaN/GaN MOS-HEMTs by interface and structure engineering’, IEEE Trans. Electron Devices, 2019, 66, (11), pp. 45914596.
    11. 11)
      • 10. Shinohara, K., Yamashita, Y., Endoh, A., et al: ‘547- GHz ft In0.7Ga0.3As-In0.52Al0.48As HEMTs with reduced source and drain resistance’, IEEE Electron Device Lett., 2004, 25, (5), p. 241.
    12. 12)
      • 11. Vasallo, B.G., Wichmann, N., Bollaert, S., et al: ‘Comparison between the dynamic performance of double- and single gate AlInAs/InGaAs HEMTs’, IEEE Trans. Electron. Devices, 2007, 54, (11), pp. 28152822.
    13. 13)
      • 25. Angelov, I., Zirath, H.: ‘New empirical nonlinear model for HEMT devices’, Electron. Lett., 1992, 28, pp. 22582266.
    14. 14)
      • 19. Hao, Y., Yang, L., Ma, X., et al: ‘High-performance microwave gate-recessed AlGaN/AlN/GaN MOS-HEMT with 73% power-added efficiency’, IEEE Electron Device Lett., 2011, 32, (5), pp. 626628.
    15. 15)
      • 33. Amarnath, G., Panda, D.K., Lenka, T.R.: ‘Microwave frequency small-signal equivalent circuit parameter extraction for AlInN/GaN MOS-HEMT’, Int. J. RF Microw. Comput. Aided Eng., 2017, 28, (2), p. e21179.
    16. 16)
      • 18. Alomari, M., Medjdoub, F., Kohn, E., et al: ‘InAln/GaN MOS-HEMT with thermally grown oxide’, Int. J. High Speed Electron. Syst., 2009, 19, (1), pp. 137144.
    17. 17)
      • 4. Murthy, B.T.V., Rao, I.S.: ‘Highly linear dual capacitive feedback LNA for L-band atmospheric radars’, J. Electromagn. Waves Appl., 2016, 30, (5), pp. 612625.
    18. 18)
      • 29. Choi, P., Goswami, S.: ‘A 5.9-GHz fully integrated GaN frontend design’, IEEE Trans. Microw. Theory Technol., 2015, 63, (4), pp. 111.
    19. 19)
      • 14. Wichmann, N., Duszynski, I., Wallart, X., et al: ‘InAlAs–InGaAs double-gate HEMTs on transferred substrate’, IEEE Electron Device Lett., 2004, 25, (6), pp. 354356.
    20. 20)
      • 17. Lin, Y.K., Noda, S., Huang, C.C., et al: ‘High-performance GaN MOS-HEMTs fabricated with ALD Al2O3 dielectric and NBE gate recess technology for high frequency power applications’, IEEE Electron Device Lett., 2017, 38, pp. 771774.
    21. 21)
      • 12. Arulkumaran, S., Ng, G.I., Manojkumar, C.M., et al: ‘In0.17Al0.83N/AlN/GaN triple T-shape fin-HEMTs with gm = 646 mS/mm, ION = 1.03 A/mm, IOFF = 1.13 µA/mm, SS = 82 mV/dec and DIBL = 28 mV/V at VD = 0.5 V’. IEEE Int. Electron Devices Meeting, San Francisco, 2014, pp. 594607.
    22. 22)
      • 24. Jarndal, A., Kompa, G.: ‘Large-signal model for AlGaN/GaN HEMTs accurately predicts trapping- and self-heating-induced dispersion and intermodulation distortion’, IEEE Trans. Electron Devices, 2007, 54, p. 2830.
    23. 23)
      • 22. Shamsir, S., Garcia, F., Islam, S.K.: ‘Modeling of enhancement-mode GaN-GIT for high-power and high-temperature application’, IEEE Trans. Electron Devices, 2020, 67, (2), pp. 588594.
    24. 24)
      • 20. Pardeshi, H., Pati, S.K., Godwin, R.D., et al: ‘Investigation of asymmetric effects due to gate misalignment, gate bias and underlap length in III–V heterostructure underlap DG MOSFET’, Phys. E Low-Dimens. Syst. Nanostruct., 2012, 46, pp. 6167.
    25. 25)
      • 26. Islam, S.S., Anwar, F.M.: ‘Spice model of AlGaN/GaN HEMTs and simulation of VCO and power amplifier’, Int. J. High Speed Electron. Syst., 2004, 14, (9), pp. 853859.
    26. 26)
      • 15. Wichmann, N., Duszynski, I., Bollaert, S., et al: ‘100 nm InAlAs/InGaAs double-gate HEMT using transferred substrate’, IEDM Technical Digest, San Francisco, CA, 2004, pp. 10231026.
    27. 27)
      • 7. Sun, H., Alt, A.R., Benedickter, H.: ‘High-speed and low-noise AlInN/GaN HEMTs on SiC’, Phys. Status Solidi Appl. Mater. Sci., 2011, 208, pp. 429433.
    28. 28)
      • 28. Wang, S., Zheng, X., Yang, H., et al: ‘A 0.75 dB NF LNA in GaAs pHEMT utilizing gate–drain capacitance and gradual inductor’, J. Semicond., 2015, 36, (7), p. 075001.
    29. 29)
      • 1. Panda, D.K, Lenka, T.R.: ‘Compact thermal noise model for enhancement mode N-polar GaN MOS-HEMT including 2DEG density solution with two sub-bands’, IET Circuits Devices Syst., 2018, 12, (6), pp. 810816.
    30. 30)
      • 3. Schwantuschke, D., Haupt, C., Kiefer, R., et al: ‘A high-gain high-power amplifier MMIC for V-band applications using 100 nm AlGaN/GaN dual-gate HEMTs’, Int. J. Microw. Wirel. Technol., 2012, 4, (3), pp. 267274.
    31. 31)
      • 31. Gupta, R., Rathi, S., Gupta, M., et al: ‘Microwave performance enhancement in double and single gate HEMT with channel thickness variation’, Superlattices Microstruct., 2010, 47, pp. 779794.
    32. 32)
      • 23. Kozak, J.P., Barchowsky, A., Hontz, M.R., et al: ‘An analytical model for predicting turn-ON overshoot in normally-OFF GaN HEMTs’, IEEE J. Emerg. Sel. Top. Power Electron., 2020, 8, (1), pp. 99110.
    33. 33)
      • 9. Yamashita, Y., Endoh, A., Shinohara, K., et al: ‘Pseudomorphic In/sub 0.52/Al/sub 0.48/As/In/sub 0.7/Ga/sub 0.3/As HEMTs with an ultrahigh f/sub T/ of 562 GHz’, IEEE Electron Device Lett., 2002, 23, (10), p. 573.
    34. 34)
      • 35. Pospieszalski, M.W.: ‘Modeling of noise parameters of MESFET's and MODFET's and their frequency and temperature dependence’, IEEE Trans. Microw. Theory Technol., 1989, 37, (9), pp. 13401350.
    35. 35)
      • 5. Nalli, A., Raffo, A., Crupi, G., et al: ‘GaN HEMT noise model based on electromagnetic simulations’, IEEE Trans. Microw. Theory Tech., 2015, 63, (8), pp. 24982508.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0015
Loading

Related content

content/journals/10.1049/iet-cds.2020.0015
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address