Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of a high-precision constant voltage flyback converter

A small-signal model is established for the basic constant voltage (CV) flyback converter firstly. Then the phase margin and the bandwidth, which can reflect the system stability and rapidity, are deduced through transfer function. The parameters affecting the stability of the system can be obtained by the model's derivation to confirm the appropriate external capacitance value. To improve the precision of CV, the compensation of cable is implemented through the module of irrigation current, pulling down the output voltage under any load conditions to the value of it with the maximal load. The prototype for the proposed CV converter has been fabricated in an MXIC 0.8 μm L80A1 process. The minimal static power consumption measured by a test is only 40 mW. In the CV mode, the precision of the output voltage can reach the level of ±1.5%. Therefore, the proposed control chip has a promising application in low power CV AC–DC flyback converter.

References

    1. 1)
      • 13. Xu, S., Zhang, X., Wang, C., et al: ‘High precision constant voltage digital control scheme for primary-side controlled flyback converter’, IET Power Electron., 2016, 9, (13), pp. 25222533.
    2. 2)
      • 6. Chang, C.Y., Xu, Y., Bian, B., et al: ‘A high-precision CV/CC AC–DC converter based on cable and inductance compensation schemes’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 63726382.
    3. 3)
      • 4. Wu, Q., Zhu, Z.M.: ‘An adaptive high-precision OCP control scheme for flyback AC/DC converters’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 89698973.
    4. 4)
      • 18. Bai, Y.J., Chen, W.J., Yang, X.Y., et al: ‘A novel constant voltage primary-side regulation topology to eliminate auxiliary winding’. IEEE Energy Conversion Congress and Exposition, Milwaukee, USA, September 2016, pp. 978984.
    5. 5)
      • 19. Shao, J.W.: ‘A highly accurate constant voltage (CV) and constant current (CC) primary side controller for offline applications’. IEEE Applied Power Electronics Conf. and Exposition-Apec. IEEE, Long Beach, California, March 2013, pp. 33113316.
    6. 6)
      • 8. Pang, H.M., Bryan, P.M.H.: ‘A stability issue with current mode control flyback converter driving LEDs’. Power Electronics and Motion Control Conf., Wuhan, China, May 2009, pp. 14021406.
    7. 7)
      • 15. Liang, T.J., Chen, K.H., Chen, J.F.: ‘Primary side control for flyback converter operating in DCM and CCM’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 36043612.
    8. 8)
      • 11. Yu, J.Z., Xu, S., Qian, Q.S., et al: ‘Modeling and analysis of primary side regulated flyback converter with pulse frequency modulation’. Power Electron ECCE Asia, Seoul, South Korea, June 2015, pp. 429434.
    9. 9)
      • 1. Wang, Z., Lai, X., Wu, Q.: ‘A PSR CC/CV flyback converter with accurate CC control and optimized CV regulation strategy’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 70457055.
    10. 10)
      • 14. Wu, C.N., Chen, Y. L., Chen, Y. M.: ‘Primary-side peak current measurement strategy for high-precision constant output current control’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 967975.
    11. 11)
      • 3. Chang, C.Y., He, L.Y., Bian, B., et al: ‘Design of a highly accuracy PSR CC/CV AC–DC converter based on a cable compensation scheme without an external capacitor’, IEEE Trans. Power Electron., 2019, 34, (10), pp. 95529561.
    12. 12)
      • 9. Chen, S.Y.: ‘Small-signal model for a flyback converter with peak current mode control’, IET Power Electron., 2014, 7, (4), pp. 805810.
    13. 13)
      • 2. Zhu, Z.M., Wu, Q., Wang, Z.Y.: ‘Self-compensating OCP control scheme for primary-side controlled flyback AC/DC converters’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 36733682.
    14. 14)
      • 5. Bai, Y.J., Chen, W.J., Yang, X.Y., et al: ‘Novel adaptive blanking regulation scheme for constant current and constant voltage primary-side controlled flyback converter’, J. Power Electron., 2017, 17, (6), pp. 14691479.
    15. 15)
      • 12. Xie, X.G, Wang, J., Zhao, C, et al: ‘A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback LED driver’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46024612.
    16. 16)
      • 7. Yu, H.F., Liang, T.J., Lai, J.H.: ‘IC design for flyback converter with output-voltage-drop compensation using primary-side feedback control’. Power Electronics and Application Conf. and Exposition, Shenzhen, China, November 2018, pp. 978983.
    17. 17)
      • 20. Digital power management IC’. Available at https://max.book118.com/html/2018/0310/156629908.shtm, accessed March 2020.
    18. 18)
      • 10. Huang, C.S, Wang, S.S.: ‘Modeling and design of cable compensation for a primary side regulation (PSR) flyback converter’. Future Energy Electronics Conf., Taiwan, China, November 2013, pp. 697703.
    19. 19)
      • 17. Li, H., Zhao, Y.Y., Guo, Z.Y.: ‘The accurate modeling and stability analysis for flyback converter based on describing function method’. Int. Symp. on Industrial Electronics, Cairns, Australia, August 2018, pp. 21632164.
    20. 20)
      • 16. Zhu, L., Cheng, Q., Deng, J. H., et al: ‘A 3.5-A buck DC–DC regulator with wire drop compensation for remote loading applications’. Proc. IEEE Int. Conf., Chengdu, China, November 2015, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0011
Loading

Related content

content/journals/10.1049/iet-cds.2020.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address