Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Broadband RF-predistortion supporting carrier aggregation

In this work, a frequency reconfigurable broadband radio frequency-predistorter (BB RF-PD) is proposed that can effectively suppress the power amplifier (PA) intermodulation distortion from 200 MHz to 2.5 GHz. It is an attractive lineariser solution for radio repeaters in long distance communication, where baseband information is not readily available. For broadband signals, existing linearisation techniques become intractable due to high cost and power consumption. The proposed BB RF-PD eliminates the use of data converters, field programmable gate arrays, but still provides the well-intentioned linearisation using the passive components. Three application scenarios have been investigated – (i) and (ii) intra-band: 160 MHz long-term evolution (LTE) signal and 100 MHz two-tone signal, and (iii) inter-/multi-band: two-component carrier LTE signal with frequency spacing of 1 GHz. For verification, the proposed BB RF-PD is implemented with a 10 W HMC8500 PA and tested using 160 MHz signal at 1.8 GHz. It delivers an adjacent channel power ratio (ACPR) of −45.65 dBc with an improvement of 16.87 dB, while for inter-band scenario a new technique has been devised for multiband communication, which is known as BB multipath RF-predistorter. It delivers an ACPR of −50 and −47 dBc for lower and upper CC, respectively.

References

    1. 1)
      • 26. Analog Devices AD9375 datasheet, Integrated, Dual RF Transceiver with Observation Path.
    2. 2)
      • 6. Chen, K., Morris, K.A., Beach, M.A.: ‘Combining envelope elimination and restoration and predistortion techniques for use in IEEE802.11g systems’, IET Microw. Antennas Propag., 2007, 1, (4), pp. 832838.
    3. 3)
      • 21. Kim, U., Kwon, Y.: ‘A high efficiency SOI CMOS stacked-FET power amplifier using phase based linearization’, IEEE Microw. Compon. Lett., 2014, 24, (12), pp. 875877.
    4. 4)
      • 19. Lee, Y.-S., Lee, M.-W., Kam, S-H., et al: ‘A high linearity wideband power amplifier with cascaded third order analog predistorters’, IEEE Microw. Compon. Lett., 2010, 20, (2), pp. 112114.
    5. 5)
      • 25. Texas Instruments DAC34SH84 datasheet, Quad- Channel, 16-Bit, 1.5 GSPS Digital-to-Analog Converter (DAC), February 2012.
    6. 6)
      • 1. Ericsson Mobility Report, June 2019.
    7. 7)
      • 22. Rostomyan, N., Jayamon, J.A., Asbeck, P.M.: ‘15 GHz Doherty power amplifier with RF predistortion linearizer in CMOS SOI’, IEEE Trans. Microw. Theory Tech., 2018, 66, (3), pp. 13391348.
    8. 8)
      • 13. Matsubara, H., Ishihara, K., Miyadai, N., et al: ‘Hybrid predistortion to compensate third-and fifth-order intermodulation of a 2 GHz power amplifier using cuber predistortion and second harmonics injection’, IET Microw. Antennas Propag., 2008, 2, (8), pp. 813822.
    9. 9)
      • 27. Pratt, P., Kearney, F.: ‘Ultrawideband digital predistortion (DPD): the rewards (power and performance) and challenges of implementation in cable distribution systems’, Analog Devices Analog Dialogue, 2017, 51-07, pp. 17, https://www.analog.com/media/en/analog-dialogue/volume-51/number-3/articles/ultrawideband-digital-predistortion-rewards-and-challenge-of-implementation-in-cable-system.pdf.
    10. 10)
      • 24. Microsemi Power matters, Energy Efficient Digital Frontend Designs with Polar Fire FPGAs for Small Cells, February 2018.
    11. 11)
      • 16. Cai, Q., Che, W., Ma, K., et al: ‘A simplified transistor based analog predistorter for a GaN power amplifier’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (3), pp. 326330.
    12. 12)
      • 12. Woo, W., Miller, M.D., Kenney, J.S.: ‘A hybrid digital/ RF envelope predistortion linearization system for power amplifier’, IEEE Trans. Microw. Theory Tech., 2005, 53, (1), pp. 229237.
    13. 13)
      • 18. Lee, Y.-S., Lee, M.-W., Kam, S.-H., et al: ‘A transistor based analog predistorter with unequal delays for memory compensation’, IEEE Microw. Compon. Lett., 2009, 19, (11), pp. 743745.
    14. 14)
      • 3. Park, C.S.: ‘Dependence of power amplifier backoff on resource allocation for non-contiguous carrier aggregation’, Electron. Lett., 2013, 49, (15), pp. 962964.
    15. 15)
      • 14. Lim, K.-H., Ahn, G., Jung, S., et al: ‘A 60-W multicarrier WCDMA power amplifier using an RF predistorter’, IEEE Trans. Circuits Syst. II, Express Briefs, 2009, 56, (4), pp. 265269.
    16. 16)
      • 15. Seo, M., Kim, K., Kim, M., et al: ‘Ultra broadband linear power amplifier using a frequency selective analog predistorter’, IEEE Trans. Circuits Syst. II, Express Briefs, 2011, 58, (5), pp. 692695.
    17. 17)
      • 10. Gumber, K., Rawat, M.: ‘A modified hybrid RF predistorter linearizer for ultra-wideband 5G systems’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2017, 7, (4), pp. 547557.
    18. 18)
      • 11. Leung, C.-S., Cheng, K.K.: ‘A new approach to amplifier linearization by the generalized baseband signal injection method’, IEEE Microw. Compon. Lett., 2002, 12, (9), pp. 336338.
    19. 19)
      • 20. Park, H., Yoo, H., Kahng, S.: ‘Broadband tunable third-order IMD cancellation using left-handed transmission-line-based phase shifter’, IEEE Microw. Compon. Lett., 2015, 25, (7), pp. 478480.
    20. 20)
      • 4. 5G Americas Wireless Technology Evolution towards 5G: 3GPP Release 13 to Release 15 and beyond, February 2017.
    21. 21)
      • 23. Texas Instruments ADS5402 datasheet, Dual 12-Bit 800Msps Analog-to-Digital Converter, January 2014.
    22. 22)
      • 5. Gilabert, P.L., Montoro, G., Vizarreta, P., et al: ‘Digital processing compensation mechanisms for highly efficient transmitter architectures’, IET Microw. Antennas Propag., 2011, 5, (8), pp. 963974.
    23. 23)
      • 9. Gumber, K., Rawat, M.: ‘Low-cost RFin–RFout predistorter linearizer for high-power amplifiers and ultra-wideband signals’, IEEE Trans. Instrum. Meas., 2018, 67, (9), pp. 20692081.
    24. 24)
      • 2. Zhang, S., Cai, X., Zhou, W., et al: ‘Green 5G enabling technologies: an overview’, IET Commun., 2019, 13, (2), pp. 135143.
    25. 25)
      • 8. Yi, J., Yang, Y., Park, M., et al: ‘Analog predistortion linearizer for high power RF amplifiers’, IEEE Trans. Microw. Theory Tech., 2000, 48, (12), pp. 27092713.
    26. 26)
      • 7. Ghannouchi, F.M., Younes, M., Rawat, M.: ‘Distortion and impairments mitigation and compensation of single- and multi-band wireless transmitters’, IET Microw. Antennas Propag., 2013, 7, (7), pp. 518534.
    27. 27)
      • 17. Lee, Y.-S., Lee, M.-W., Jeong, Y.: ‘A wideband analog predisrortion power amplifier with multibranch nonlinear path for memory effect compensation’, IEEE Microw. Compon. Lett., 2009, 19, (7), pp. 476478.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2020.0003
Loading

Related content

content/journals/10.1049/iet-cds.2020.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address