Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low-power, high-linearity transconductor with a high tolerance for process and temperature variations

A novel scheme for tunable complementary metal–oxide–semiconductor (CMOS) transconductor robust against process and temperature (PT) variations is presented. The proposed configuration is a voltage controlled circuit based on a double negative channel-metal-oxide-semiconductor (NMOS) transistor differential pairs connected in parallel, which has low power and high linearity. The PT compensation is completed by two identical PT compensation bias voltage generators (PTCBVGs), which can guarantee the designed transconductor high tolerance for PT variations. A complete CMOS transconductor with PTCBVG has been designed and simulated using 0.18 μm technology. The effectiveness of PT compensation technique is proved. The simulation results of post-layout are commensurate with pre-layout. Post-layout simulation results show that when temperature changes from − 40 to 85°C for different process corners (TT, SS, SF, FS and FF), the transconductance varies from 91.8 to 123.6 μS, the temperature coefficient is <1090 ppm/°C, the total harmonic distortion is from  − 78 to −72dB at 1 MHz for 0.2 VPP input signal, −3 dB bandwidth changes from 2.5 to 5 GHz, input-referred noise varies from 78.1 to 124.8 nV/sqartHz at 1 MHz and DC power is from 1.5 to 3.2 mW.

References

    1. 1)
      • 17. Mondal, I., Krishnapura, N.: ‘Linearity- and gain-enhanced wideband transconductor using digitally auto-tuned negative conductance load’. IEEE Int. Symp. on Circuits and Systems 2018, Florence Italy, 2018, pp. 15.
    2. 2)
      • 24. Le-Thai, H., Nguyen, H., Nguyen, H.N., et al: ‘An IF bandpass filter based on a low distortion transconductor’, IEEE J. Solid-State Circuits, 2010, 45, (11), pp. 22502261.
    3. 3)
      • 22. Lewinski, A., Silva-Martinez, J.: ‘A high-frequency transconductor using a robust nonlinearity cancellation’, IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53, (9), pp. 896900.
    4. 4)
      • 18. Sanchez-Rodriguez, T., Lujan-Martinez, C.I., Carvajal, R.G., et al: ‘A CMOS linear tunable transconductor for continuous-time tunable Gm-C filters’. IEEE Int. Symp. on Circuits and Systems 2008, Seattle, WA, USA, 2008, pp. 912915.
    5. 5)
      • 29. Calvo, B., Celma, S., Sanz, M.T., et al: ‘Low-voltage linearly tunable CMOS transconductor with common-mode feedforward’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2008, 55, (3), pp. 715721.
    6. 6)
      • 9. Salmeh, R., Maundy, B.: ‘A low-voltage linearly tuned fully differential CMOS OTA and its applications in filter design’. IEEE Conf. Proc. Canadian Conf. on Electrical and Computer Engineering. (CCECE 2002), Winnipeg, Manitoba, Canada, 2002, pp. 393398.
    7. 7)
      • 20. Thomas-Erviti, G., Algueta-Miguel, J.M., De la Cruz Blas, C.A., et al: ‘CMOS transconductor with improved linearity using the bulk of self-cascode transistors’, Electron. Lett., 2017, 53, (3), pp. 136138.
    8. 8)
      • 15. Sánchez-Rodríguez, T., Gomez-Galan, J. A., Carvajal, R.G., et al: ‘A 1.2-V 450-μW Gm-C bluetooth channel filter using a novel gain-boosted tunable transconductor’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (8), pp. 15721576.
    9. 9)
      • 21. Yamaguchi, I., Matsumoto, F., Noguchi, Y.: ‘Technique to improve linearity of transconductor with bias offset voltages controlling a tail current’, Electron. Lett., 2005, 41, (21), pp. 11461148.
    10. 10)
      • 8. Voghell, J. C., Sawan, M.: ‘A current tuneable fully differential transconductor dedicated for filtering applications’. Proc. Eleventh Int. Conf. on Microelectronics ICM 1999, Kuwait Kuwait, 2000, pp. 221224.
    11. 11)
      • 19. Elamien, M.B, Mahmoud, S.A.: ‘A linear CMOS balanced output transconductor using double differential pair with source degeneration and adaptive biasing’. IEEE 59th Int. Midwest Symp. on Circuits and Systems 2016, Abu Dhabi, United Arab Emirates, 2016, pp. 14.
    12. 12)
      • 12. Acosta, L., Carvajal, R.G., Jimenez, M., et al: ‘A CMOS transconductor with 90 dB SFDR and low sensitivity to mismatch’. IEEE Int. Symp. on Circuits and Systems 2006, Island of Kos Greece, 2006, pp. 6972.
    13. 13)
      • 27. Wei, J., Yao, Y., Luo, L., et al: ‘A novel nauta transconductor for untra-wideband gm-C filter with temperature calibration’. Int. Symp. on Circuits and Systems 2019, Sapporo Japan, 2019, pp. 14.
    14. 14)
      • 5. Pedro, M., Galán, J., Sánchez-Rodríguez, T., et al: ‘A compact voltage-controlled transconductor with high linearity’. IEEE 17th IEEE Int. Conf. on Electronics, Circuits, and Systems (ICECS 2010), Athens Greece, 2010, pp. 2124.
    15. 15)
      • 1. Nedungadi, A., Viswanathan, T.: ‘Design of linear CMOS transconductance elements’, IEEE Trans. Circuits Syst., 1984, 31, (10), pp. 891894.
    16. 16)
      • 32. Cheng, Y., Hu, C.: ‘Threshold voltage model’, ‘MOSFET modeling & BSIM3 user's guide’ (Springer Science + Business media Inc., New York, NY, 2002, 1st Edn.), pp. 93141.
    17. 17)
      • 11. Zhao, J., Sun, Y., Liu, J.: ‘A Gm-C complex IF filter using fully differential transconductor for dual-mode GNSS receiver’. IEEE 60th Int. Midwest Symp. on Circuits and Systems 2017, Boston, MA, USA, 2017, pp. 759762.
    18. 18)
      • 13. Lujan-Martinez, C., Carvajal, R. G., Galan, J., et al: ‘A tunable pseudo-differential OTA with-78 dB THD consuming 1.25 mW’, IEEE Trans. Circuits Syst. II, Express Briefs, 2008, 55, (6), pp. 527531.
    19. 19)
      • 31. Razavi, B.: ‘Bandgap reference’, in Stephen, W. (Ed.): ‘Design of analog CMOS integrated circuits’ (McGraw-Hill, New York, NY, 2001, International edition 2001), p. 381.
    20. 20)
      • 26. Amaravati, A., Dave, M., Baghini, M.S., et al: ‘a fully On-chip PT-invariant transconductor’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (9), pp. 19611964.
    21. 21)
      • 6. Algueta, J.M., Lopez-Martin, A.J., Ramirez-Angulo, J, et al: ‘Improved technique for continuous tuning of CMOS transconductor’. IEEE Int. Symp. on Circuits and Systems 2013, Beijing China, 2013, pp. 12881291.
    22. 22)
      • 25. Kim, D., Kim, B., Nam, S.: ‘A transconductor and tunable Gm-C high-pass filter linearization technique using feedforward Gm3 canceling’, IEEE Trans. Circuits Syst. II, Express Briefs, 2015, 62, (11), pp. 10581062.
    23. 23)
      • 23. Tongpoon, P, Miyazawa, T., Matsumoto, F., et al: ‘Design of a linear transconductor considering effects of weak inversion region and mobility degradation’. IEEE Int. Symp. on Intelligent Signal Processing and Communication System 2009, Kanazawa Japan, 2009, pp. 280283.
    24. 24)
      • 4. Kaewdang, K., Surakampontorn, W.: ‘A novel widely linear current-tunable CMOS transconductor’. IEEE 2009 Int. Symp. on Intelligent Signal Processing and Communication Systems (ISPACS 2009), Kanazawa Japan, 2009, pp. 288291.
    25. 25)
      • 28. Rezzi, F., Baschirotto, A., Castello, R.: ‘A 3 V pseudo-differential transconductor with intrinsic rejection of the common-mode input signal’. IEEE Proc. of 1994 37th Midwest Symp. on Circuits and Systems 1994, Lafayette LA USA, 1994, pp. 8588.
    26. 26)
      • 30. Czarnul, Z., Fujii, N.: ‘Highly-linear transconductor cell realised by double MOS transistor differential pairs’, Electron. Lett., 1990, 26, (21), pp. 18191821.
    27. 27)
      • 2. Szczepanski, S., Jakusz, J., Czarniak, A.: ‘Differential pair transconductor linearization via electronically controlled current-mode cells’, Electron. Lett., 1992, 28, (12), pp. 10931095.
    28. 28)
      • 3. Ngamkham, W., Kiatwarin, N., Narksap, W., et al: ‘A linearized source-couple pair transconductor using a low-voltage square root circuit’. IEEE Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTICON 2008, Krabi Thailand, 2008, pp. 701704.
    29. 29)
      • 7. Wang, Z., Guggenbuhl, W.: ‘A voltage-controllable linear MOS transconductor using bias offset technique’, IEEE J. Solid-State Circuits, 1990, 25, (1), pp. 315317.
    30. 30)
      • 14. Sánchez-Rodríguez, T., Galán, J. A., Pedro, M., et al: ‘Low-power CMOS variable gain amplifier based on a novel tunable transconductor’, IET Circuits Devices Syst., 2015, 9, (2), pp. 105110.
    31. 31)
      • 16. Ohbuchi, T., Matsumoto, F.: ‘Improvement technique of tuning range for local-feedback MOS transconductor’. 2017 24th Int. Conf. Mixed Design of Integrated Circuits and Systems MIXDES 2017, Bydgoszcz Poland, 2017, pp. 95100.
    32. 32)
      • 10. Sawigun, C., Mahattanakul, J.: ‘A low-voltage CMOS linear transconductor suitable for analog multiplier application’. IEEE Int. Symp. on Circuits and Systems 2006, Island of Kos Greece, 2006, p. 4.
    33. 33)
      • 33. Spectre circuit simulator device models and circuit components’: ‘Virtuoso spectre circuit simulator components and device models manual’ (Cadence Design Systems, Inc., San Jose, CA, 2004, 5.1.41 edn.), p. 747.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0565
Loading

Related content

content/journals/10.1049/iet-cds.2019.0565
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address