Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and realisation of a fractional-order sinusoidal oscillator

In this work, a new fractional-order sinusoidal oscillator is proposed. The proposed oscillator consists of one fractional-order all-pass filter and one fractional-order lossless integrator blocks. In order to emulate fractional-order capacitors, three different approximation methods the RC pair, Matsuda and Oustaloup are employed and the results are compared. Three sinusoidal voltage signals with different phases that are controlled by fractional orders are provided by the proposed oscillator topology that is not possible for the classical integer-order case. Grounded passive components are used in the introduced oscillator circuit. Additionally, the output voltage signals are available at the low impedance terminal W of AD844ANs. Moreover, the time constant of the fractional-order all-pass filter can be adjusted accurately by means of second resistor R x in the all-pass filter section. In addition to the simulation results, the proposed fractional oscillator is also implemented to verify the oscillator circuit experimentally. For the case of fractional orders α = 1 and β = 0.5, the measurement results are 10.3 kHz, 43.22° and 67.99°, respectively, while the desired values are 10 kHz, 45° and 67.36°, respectively.

References

    1. 1)
      • 5. Krishna, B.: ‘Studies on fractional order differentiators and integrators: A survey’, Signal Process., 2011, 91, (3), pp. 386426.
    2. 2)
      • 13. Said, L.A., Radwan, A.G., Madian, A.H., et al: ‘Two-port two impedances fractional order oscillators’, Microelectron. J., 2016, 55, pp. 4052.
    3. 3)
      • 28. Elwy, O., Said, L.A., Madian, A.H., et al: ‘All possible topologies of the fractional-order Wien oscillator family using different approximation techniques’, Circuits Syst. Signal Process., 2019, 38, (9), pp. 39313951.
    4. 4)
      • 21. Tsirimokou, G., Psychalinos, C., Elwakil, A., et al: ‘Fractional-order multiphase sinusoidal oscillator design using current-mirrors’. 2018 41st Int. Conf. on Telecommunications and Signal Processing (TSP), Athens, Greece, 2018.
    5. 5)
      • 40. Kartci, A., Sotner, R., Jerabek, J., et al: ‘Phase shift keying modulator design employing electronically controllable all-pass sections’, Analog Integr. Circuits Signal Process., 2016, 89, (3), pp. 781800.
    6. 6)
      • 29. Maundy, B., Elwakil, A., Gift, S.: ‘On a multivibrator that employs a fractional capacitor’, Analog Integr. Circuits Signal Process., 2009, 62, (1), pp. 99103.
    7. 7)
      • 25. Mishra, S.K., Gupta, M., Upadhyay, D.K.: ‘Compact design of four-phase fractional-order oscillator with independent phase and frequency control’, Indian J. Phys., 2018, 93, (7), pp. 891901.
    8. 8)
      • 24. Pradhan, A., Subhadhra, K.S., Atique, N., et al: ‘MMCC-based current-mode fractional-order voltage-controlled oscillators’. 2018 2nd Int. Conf. on Inventive Systems and Control (ICISC), Coimbatore, India, 2018.
    9. 9)
      • 53. Minaei, S., Ibrahim, M.A.: ‘General configuration for realizing current-mode first-order all-pass filter using DVCC’, Int. J. Electron., 2005, 92, (6), pp. 347356.
    10. 10)
      • 8. Maundy, B., Elwakil, A., Gift, S.: ‘On the realisation of multiphase oscillators using fractional-order allpass filters’, Circuits Syst. Signal Process., 2010, 31, (1), pp. 317.
    11. 11)
      • 2. Elwakil, A.: ‘Fractional-order circuits and systems: an Emerging interdisciplinary research area’, IEEE Circuits Syst. Mag., 2010, 10, (4), pp. 4050.
    12. 12)
      • 27. Kartci, A., Herencsar, N., Dvorak, J., et al: ‘VDIBA-based fractional-order oscillator design’, 2019 42nd Int. Conf. on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 2019.
    13. 13)
      • 62. Mishra, S.K., Upadhyay, D.K., Gupta, M.: ‘An approach to improve the performance of fractional-order sinusoidal oscillators’, Chaos, Solitons Fractals, 2018, 116, pp. 126135.
    14. 14)
      • 35. Tripathy, M.C., Mondal, D., Biswas, K., et al: ‘Design and performance study of phase-locked loop using fractional-order loop filter’, Int. J. Circuit Theory Appl., 2014, 43, (6), pp. 776792.
    15. 15)
      • 10. Said, L.A., Radwan, A.G., Madian, A.H., et al: ‘Fractional order oscillators based on operational transresistance amplifiers’, AEU – Int. J. Electron. Commun., 2015, 69, (7), pp. 9881003.
    16. 16)
      • 44. Matsuda, K., Fujii, H.: ‘H∞ optimized wave-absorbing control - analytical and experimental results’, J. Guid. Control Dyn., 1993, 16, (6), pp. 11461153.
    17. 17)
      • 46. Saito, K., Sugi, M.: ‘Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and noninteger exponents’, IEICE Trans. Fundamentals Electron., Commun. Comput. Sci., 1993, E76, (2), pp. 205209.
    18. 18)
      • 26. Elwy, O., Rashad, S.H., Said, L.A., et al: ‘Comparison between three approximation methods on oscillator circuits’, Microelectron. J., 2018, 81, pp. 162178.
    19. 19)
      • 38. Freeborn, T., Maundy, B., Elwakil, A.: ‘Field programmable analogue array implementation of fractional step filters’, IET Circuits Devices Syst., 2010, 4, (6), p. 514.
    20. 20)
      • 11. Kubánek, D., Khateb, F., Tsirimokou, G., et al: ‘Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors’, Circuits Syst. Signal Process., 2016, 35, (6), pp. 20032016.
    21. 21)
      • 22. Kartci, A., Herencsar, N., Brancik, L.B., et al: ‘CMOS-RC Colpitts oscillator design using floating fractional-order inductance simulator’. 2018 IEEE 61st Int. Midwest Symp. on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 2018.
    22. 22)
      • 14. Fouda, M.E., Soltan, A., Radwan, A.G., et al: ‘Fractional-order multi-phase oscillators design and analysis suitable for higher-order PSK applications’, Analog Integr. Circuits Signal Process., 2016, 87, (2), pp. 301312.
    23. 23)
      • 23. Kartci, A., Agambayev, A., Hassan, A.H., et al: ‘Experimental verification of a fractional-order Wien oscillator built using solid-state capacitors’. 2018 IEEE 61st Int. Midwest Symp. on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 2018.
    24. 24)
      • 45. Sugi, M., Hirano, Y., Miura, Y.F., et al: ‘Simulation of fractal immittance by analog circuits: an approach to the optimized circuits’, IEICE Trans. Fundamentals Electron., Commun. Comput. Sci., 1999, 82, (8), pp. 16271635.
    25. 25)
      • 33. Fergani, N., Charef, A.: ‘Process step response based fractional PIλDμ controller parameters tuning for desired closed loop response’, Int. J. Syst. Sci., 2014, 47, (3), pp. 521532.
    26. 26)
      • 15. Dar, M., Kan, N., Khanday, F., et al: ‘Design of fractional-order multiphase sinusoidal oscillators’. 3rd Int. Conf. on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences (EEECOS 2016), Tadepalligudem, India, 2016.
    27. 27)
      • 55. Sakul, C., Jaikla, W., Dejhan, K.: ‘New resistorless current-mode quadrature oscillators using 2 CCCDTAs and grounded capacitors’, Radioengineering, 2011, 20, (4), pp. 890897.
    28. 28)
      • 37. Radwan, A.G., Elwakil, A.S., Soliman, A.M.: ‘On the generalization of second-order filters to the fractional-order domain’, J. Circuits Syst. Comput., 2009, 18, (2), pp. 361386.
    29. 29)
      • 31. Podlubny, I., Petráš, I., Vinagre, B.M., et al: ‘Analogue realisations of fractional-order controllers’, Nonlinear Dyn., 2002, 29, (1/4), pp. 281296.
    30. 30)
      • 48. Oustaloup, A., Levron, F., Mathieu, B., et al: ‘Frequency-band complex noninteger differentiator: characterization and synthesis’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2000, 47, (1), pp. 2539.
    31. 31)
      • 34. Sotner, R., Jerabek, J., Kartci, A., et al: ‘Electronically reconfigurable two-path fractional-order PI/D controller employing constant phase blocks based on bilinear segments using CMOS modified current differencing unit’, Microelectron. J., 2019, 86, pp. 114129.
    32. 32)
      • 4. Oliveira, E.C.D., Machado, J.A.T.: ‘A review of definitions for fractional derivatives and integral’, Math. Probl. Eng., 2014, 2014, pp. 16.
    33. 33)
      • 41. Krishna, M.S., Das, S., Biswas, K., et al: ‘Fabrication of a fractional order capacitor with desired specifications: A study on process identification and characterization’, IEEE Trans. Electron Devices, 2011, 58, (11), pp. 40674073.
    34. 34)
      • 57. Osuch, P.J., Stander, T.: ‘High-Q second-order all-pass delay network in CMOS’, IET Circuits Devices Syst., 2019, 13, (2), pp. 153162.
    35. 35)
      • 3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: ‘Theory and applications of fractional differential equations’ (Elsevier, Amsterdam, The Netherlands, 2006).
    36. 36)
      • 12. Elwakil, A., Allagui, A., Maundy, B., et al: ‘A low frequency oscillator using a super-capacitor’, AEU – Int. J. Electron. Commun., 2016, 70, (7), pp. 970973.
    37. 37)
      • 1. Ortigueira, M.: ‘An introduction to the fractional continuous-time linear systems: the 21st century systems’, IEEE Circuits Syst. Mag., 2008, 8, (3), pp. 1926.
    38. 38)
      • 58. Radwan, A.G., Soliman, A.M., Elwakil, A.S., et al: ‘On the stability of linear systems with fractional-order elements’, Chaos, Solitons Fractals, 2009, 40, (5), pp. 23172328.
    39. 39)
      • 61. https://www.diodes.com/assets/Datasheets/ds28002.pdf, accessed 1 December 2019.
    40. 40)
      • 47. Carlson, G., Halijak, C.: ‘Approximation of fractional capacitors (1/s)^(1/n) by a regular Newton process’, IEEE Trans. Circuit Theory, 1964, 11, (2), pp. 210213.
    41. 41)
      • 7. Radwan, A.G., Elwakil, A.S., Soliman, A.M.: ‘Fractional-order sinusoidal oscillators: design procedure and practical examples’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2008, 55, (7), pp. 20512063.
    42. 42)
      • 39. Ahmadi, P., Maundy, B., Elwakil, A., et al: ‘High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach’, IET Circuits Devices Syst., 2012, 6, (3), p. 187.
    43. 43)
      • 32. Caponetto, R., Dongola, G., Fortuna, L., et al: ‘Fractional order systems: modeling and control applications’ (World Scientific, Singapore, 2010).
    44. 44)
      • 54. Maheshwari, S.: ‘Novel cascadable current-mode first order all-pass sections’, Int. J. Electron., 2007, 94, (11), pp. 9951003.
    45. 45)
      • 59. https://www.analog.com/media/en/technical-documentation/data-sheets/AD844.pdf, accessed 1 December 2019.
    46. 46)
      • 42. Caponetto, R., Graziani, S., Pappalardo, F.L., et al: ‘Experimental characterization of ionic polymer metal composite as a novel fractional order element’, Adv. Math. Phys., 2013, 2013, pp. 110.
    47. 47)
      • 51. Bertsias, P., Psychalinos, C., Elwakil, A., et al: ‘Current-mode capacitorless integrators and differentiators for implementing emulators of fractional-order elements’, AEU – Int. J. Electron. Commun., 2017, 80, pp. 94103.
    48. 48)
      • 60. https://www.analog.com/media/en/technical-documentation/data-sheets/AD830.pdf, accessed 1 December 2019.
    49. 49)
      • 9. Soltan, A., Radwan, A.G., Soliman, A.M.: ‘General procedure for two integrator loops fractional order oscillators with controlled phase difference’. 2013 25th Int. Conf. on Microelectronics (ICM), Beirut, Lebanon, 2013.
    50. 50)
      • 49. Valsa, J., Dvořák, P., Friedl, M.: ‘Network model of the CPE’, Radioengineering, 2011, 20, (3), pp. 619626.
    51. 51)
      • 17. Kartci, A., Herencsar, N., Koton, J., et al: ‘Fractional-order oscillator design using unity-gain voltage buffers and OTAs’. 2017 IEEE 60th Int. Midwest Symp. on Circuits and Systems (MWSCAS), Boston, MA, USA, 2017.
    52. 52)
      • 52. Tangsrirat, W., Pukkalanun, T., Surakampontorn, W.: ‘Resistorless realisation of current-mode first-order allpass filter using current differencing transconductance amplifiers’, Microelectron. J., 2010, 41, (2–3), pp. 178183.
    53. 53)
      • 20. Mishra, S.K., Gupta, M., Upadhyay, D.K.: ‘Design and implementation of DDCC-based fractional-order oscillator’, Int. J. Electron., 2018, 106, (4), pp. 581598.
    54. 54)
      • 16. Elwakil, A., Agambayev, A., Allagui, A., et al: ‘Experimental demonstration of fractional-order oscillators of orders 2.6 and 2.7’, Chaos, Solitons Fractals, 2017, 96, pp. 160164.
    55. 55)
      • 19. Said, L.A., Radwan, A.G., Madian, A.H., et al: ‘Three fractional-order-capacitors-based oscillators with controllable phase and frequency’, J. Circuits Syst. Comput., 2017, 26, (10), p. 1750160.
    56. 56)
      • 18. Kartci, A., Herencsar, N., Koton, J., et al: ‘Compact MOS-RC voltage-mode fractional-order oscillator design’. 2017 European Conf. on Circuit Theory and Design (ECCTD), Catania, Italy, 2017.
    57. 57)
      • 30. Saçu, I.E., Alçı, M.: ‘An electronically controllable fractional multivibrator’, IETE J. Res., 2018, pp. 19.
    58. 58)
      • 36. Radwan, A.G., Soliman, A.M., Elwakil, A.S.: ‘First-order filters generalized to the fractional domain’, J. Circuits Syst. Comput., 2008, 17, (1), pp. 5566.
    59. 59)
      • 56. Kumar, A., Paul, S.K.: ‘Current mode first order universal filter and multiphase sinusoidal oscillator’, AEU – Int. J. Electron. Commun., 2017, 81, pp. 3749.
    60. 60)
      • 50. Tsirimokou, G., Psychalinos, C., Salama, K., et al: ‘Experimental verification of on-chip CMOS fractional-order capacitor emulators’, Electron. Lett., 2016, 52, (15), pp. 12981300.
    61. 61)
      • 6. Ahmad, W., El-Khazali, R., Elwakil, A.: ‘Fractional-order Wien-bridge oscillator’, Electron. Lett., 2001, 37, (18), pp. 11101112.
    62. 62)
      • 43. Buscarino, A., Caponetto, R., Pasquale, G.D., et al: ‘Carbon black based capacitive fractional order element towards a new electronic device’, AEU – Int. J. Electron. Commun., 2018, 84, pp. 307312.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0534
Loading

Related content

content/journals/10.1049/iet-cds.2019.0534
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address