access icon free Evanescent mode based compact modelling of a dual-metal double-gate tunnel field-effect transistor

In this study, channel potential for silicon-based doped dual-metal double-gate tunnel field-effect transistor structure is analytically solved using the evanescent-mode approach in the sub-threshold region. This method generally describes short channel effects in the entire channel region of the device structure and predicts different characteristic length which depends on tunnel current and does not depend along a transverse direction within the channel. The model is valid for the whole device structure rather than just semiconductor/insulator interfaces. The impact of variation of bias condition on channel potential is also investigated in the sub-threshold region. Finally, drain current is evaluated using Kane's and Kleysh's model and validated with a calibrated simulation, which has been carried out using 2D TCAD Sentaurus simulator.

Inspec keywords: tunnel field-effect transistors; technology CAD (electronics); elemental semiconductors; semiconductor device models; silicon

Other keywords: bias condition; 2D TCAD Sentaurus simulator; compact modelling; sub-threshold region; Kleysh model; drain current; channel potential; evanescent-mode approach; tunnel current; silicon-based doped double-gate tunnel field-effect transistor structure; Kane model; channel region; characteristic length; Si; short channel effects; device structure

Subjects: Semiconductor device modelling, equivalent circuits, design and testing; Other field effect devices

References

    1. 1)
      • 20. Kumar, M.J., Janardhanan, S.: ‘Doping-less tunnel field effect transistor: design and investigation’, IEEE Trans. Electron Devices, 2013, 60, (10), pp. 32853290, https://doi.org/10.1109/TED.2013.2276888.
    2. 2)
      • 1. Frank, D., Dennard, R.H., Nowak, E., et al: ‘Device scaling limits of Si MOSFETs and their application dependence’, Proc. IEEE, 2001, 89, (3), pp. 259288, https://doi.org/10.1109/5.915374.
    3. 3)
      • 21. Mallik, A., Chattopadhyay, A.: ‘Impact of a spacer-drain overlap on the characteristics of a silicon tunnel field-effect transistor based on vertical tunneling’, IEEE Trans. Electron Devices, 2013, 60, pp. 935943, https://doi.org/10.1109/TED.2013.2237776.
    4. 4)
      • 15. Wan, J., Royer, C.L., Zaslavsky, A., et al: ‘A tunneling field effect transistor model combining interband tunneling with channel transport’, J. Appl. Phys., 2011, 110, (10), pp. 17, https://doi.org/10.1063/1.3658871.
    5. 5)
      • 2. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: ‘Leakage current mechanisms and leakage reduction techniques in deepsubmicrometer CMOS circuits’, Proc. IEEE, 2003, 91, (2), pp. 305327, https://doi.org/10.1109/JPROC.2002.808156.
    6. 6)
      • 14. Kumar, S., Raj, B.: ‘Compact channel potential analytical modeling of DG-TFET based on evanescent-mode approach’, J. Comput. Electron., 2015, 14, (3), pp. 820827, https://doi.org/10.1007/s10825-015-0718-9.
    7. 7)
      • 13. Singh, S., Raj, B.: ‘Two-dimensional analytical modeling of the surface potential and drain current of a double-gate vertical t-shaped tunnel field-effect transistor’, J. Comput. Electron., 2020, 19, (3), pp. 11541163, https://doi.org/10.1007/s10825-020-01496-4.
    8. 8)
      • 6. Kumar, S., Singh, K., Chander, S., et al: ‘2-D analytical drain current model of double-gate heterojunction TFETs with a SiO2/HfO2 stacked gate-oxide structure’, IEEE Trans. Electron Devices, 2018, 65, (1), pp. 331338, https://doi.org/10.1109/TED.2017.2773560.
    9. 9)
      • 11. Pandey, P., Vishnoi, R., Kumar, M.J.: ‘A full-range dual material gate tunnel field effect transistor drain current model considering both source and drain depletion region band-to-band tunneling’, J. Comput. Electron., 2015, 14, (1), pp. 280287, https://doi.org/10.1007/s10825-014-0649-x.
    10. 10)
      • 19. Duan, X., Zhang, J., Wang, S., et al: ‘A high-performance gate engineered InGan dopingless tunnel FET’, IEEE Trans. Electron Devices, 2018, 65, pp. 12231229, https://doi.org/10.1109/TED.2018.2796848.
    11. 11)
      • 9. Wang, L., Yu, E., Taur, Y., et al: ‘Design of tunneling field-effect transistors based on staggered heterojunctions for ultralow-power applications’, IEEE Electron Device Lett., 2010, 31, (5), pp. 431433, https://doi.org/10.1109/LED.2010.2044012.
    12. 12)
      • 5. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: ‘Performance comparison between p-i-n tunneling transistors and conventional MOSFETs’, IEEE Trans. Electron Devices, 2009, 56, (3), pp. 456465, https://doi.org/10.1109/TED.2008.2011934.
    13. 13)
      • 12. Singh, S., Raj, B.: ‘Modeling and simulation analysis of SiGe heterojunction double gate vertical t-shaped tunnel FET’, Superlattices Microstruct., 2020, 142, p. 106496, https://doi.org/10.1016/j.spmi.2020.106496.
    14. 14)
      • 16. Frank, D.J., Taur, Y., Wong, H.-S.P.: ‘Generalized scale length for two-dimensional effects in MOSFETs’, IEEE Electron Device Lett., 1998, 19, pp. 385387, https://doi.org/10.1109/55.720194.
    15. 15)
      • 7. Meshkin, R., Ziabari, S.A.S, Jordehi, A.R.: ‘A novel analytical approach to optimize the work functions of dual-material double-gate tunneling-FETs’, Superlattices Microstruct., 2018, 126, pp. 6371, https://doi.org/10.1016/j.spmi.2018.12.016.
    16. 16)
      • 22. Asra, R., Murali, K.V.R.M., Rao, V.R.: ‘A binary tunnel field effect transistor with a steep sub-threshold swing and increased ON current’, Jpn. J. Appl. Phys., 2010, 49, p. 120203, https://doi.org/10.1143/JJAP.49.120203.
    17. 17)
      • 8. Appenzeller, J., Lin, Y.M, Knoch, J., et al: ‘Comparing carbon nanotube transistors–the ideal choice: a novel tunneling device design’, IEEE Trans. Electron Devices, 2005, 52, (12), pp. 25682576, https://doi.org/10.1109/TED.2005.859654.
    18. 18)
      • 4. Choi, W.Y., Park, B.G., Lee, J.D., et al: ‘Tunneling field-effect transistors with subthreshold swing less than 60 mV/dec’, IEEE Electron Device Lett., 2007, 28, (8), pp. 743745, https://doi.org/10.1109/LED.2007.901273.
    19. 19)
      • 3. Boucart, K., Ionescu, A.M.: ‘Double-gate tunnel FET with high K gate dielectric’, IEEE Trans. Electron Devices, 2007, 54, (7), pp. 17251733, https://doi.org/10.1109/TED.2007.899389.
    20. 20)
      • 10. Bhuwalka, K.K., Schulze, J., Eisele, I.: ‘Scaling the vertical tunnel FET with tunnel bandgap modulation and gate work function engineering’, IEEE Trans. Electron Devices, 2005, 52, (5), pp. 909917, https://doi.org/10.1109/TED.2005.846318.
    21. 21)
      • 17. Kane, E.O.: ‘Theory of tunneling’, J. Appl. Phys., 1961, 32, (1), pp. 8391, https://doi.org/10.1063/1.1735965.
    22. 22)
      • 18. Bashir, F., Loan, S.A., Rafat, M., et al: ‘A high performance gate engineered charge plasma based tunnel field effect transistor’, J. Comput. Electron., 2015, 14, (2), pp. 477485, https://doi.org/10.1007/s10825-015-0665-5.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0531
Loading

Related content

content/journals/10.1049/iet-cds.2019.0531
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading