access icon free Performance analysis of mixed CNT bundle interconnects at 10 nm technology

In recent past, the cross-coupling crosstalk becomes a dominating factor due to the closer proximity of wire that reduces the performance of coupled interconnects at lower technology. To overwhelm interconnect problems, this work demonstrates a comprehensive study of unshielded and active shielded spatially arranged mixed carbon nanotube (CNT) bundle (SMCB) and randomly distributed mixed CNT bundle (RMCB) interconnects at 10 nm technology. Using a driver-interconnect-load setup, a unique multi-conductor transmission line and an equivalent single conductor model is proposed considering the impact of different CNT diameters with their associated line and coupling parasitics. A resistive and CNT field-effect transistor (CNTFET) driver model is considered at 10 nm technology to demonstrate the impact of single line delay, cross-coupling delay, and power dissipation for the densely packed bundle at global lengths. It is observed that a CNTFET-based realistic RMCB exhibits on an average 29.19 and 39.56% reduced single line delay and power dissipation, respectively compared to different SMCB configurations at 700 µm interconnect lengths. Moreover, a shielded RMCB encouragingly provides an improved immunity of cross-coupling impact for the on-chip interconnects at 10 nm technology. Therefore, from fabrication and modelling aspects, a randomly distributed MCB can be proved as emerging interconnect for next-generation on-chip applications.

Inspec keywords: carbon nanotube field effect transistors; nanoelectronics; semiconductor device metallisation; semiconductor device models

Other keywords: CNTFET-based realistic RMCB; cross-coupling delay; interconnect problems; mixed CNT bundle interconnects; coupled interconnects; CNTFET driver model; equivalent single conductor model; performance analysis; next-generation on-chip applications; SMCB configurations; single line delay; CNT diameters; CNT field-effect transistor; on-chip interconnects; densely packed bundle; unique multiconductor transmission line; driver-interconnect-load setup; cross-coupling crosstalk; interconnect lengths; cross-coupling impact; spatially arranged mixed carbon nanotube bundle; coupling parasitics; size 10.0 nm; C; power dissipation; size 700.0 mum; randomly distributed mixed CNT bundle

Subjects: Other field effect devices; Fullerene, nanotube and related devices; Metallisation and interconnection technology; Semiconductor device modelling, equivalent circuits, design and testing

References

    1. 1)
      • 1. Gholipour, M., Masoumi, N.: ‘Efficient inclusive analytical model for delay estimation of multi-walled carbon nanotube interconnects’, IET Circuits Devices Syst., 2012, 6, (4), pp. 252259.
    2. 2)
      • 2. Sathyakam, P.U., Mallick, P.S., Saxena, A.A.: ‘High-speed sub-threshold operation of carbon nanotube interconnects’, IET Circuits Devices Syst., 2019, 13, (4), pp. 526533.
    3. 3)
      • 5. Chen, X., Akinwande, D., Lee, K.J., et al: ‘Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics’, IEEE Trans. Electron. Devices, 2010, 57, (11), pp. 31373143.
    4. 4)
      • 18. Sarto, M.S., Tamburrano, A.: ‘Single-conductor transmission-line model of multiwall carbon nanotubes’, IEEE Trans. Nanotechnol., 2010, 9, (1), pp. 8292.
    5. 5)
      • 4. Chappanda, K.N., Batra, N.M., Holguin-Lerma, J.A., et al: ‘Fabrication and characterization of MWCNT-based bridge devices’, IEEE Trans. Nanotechnol., 2017, 16, (6), pp. 10371046.
    6. 6)
      • 29. Collins, P.G., Avouris, P.: ‘Multishell conduction in multiwalled carbon nanotubes’, Appl. Phys. A, Solids Surf., 2002, 74, (3), pp. 329332.
    7. 7)
      • 19. Das, D., Rahaman, H.: ‘Analysis of crosstalk in single- and multiwall carbon nanotube interconnects and its impact on gate oxide reliability’, IEEE Trans. Nanotechnol., 2011, 10, (6), pp. 13621370.
    8. 8)
      • 28. Yoon, Y.G., Delaney, P., Louie, S.G.: ‘Quantum conductance of multiwall carbon nanotubes’, Phys. Rev. B, Condens. Matter, 2002, 66, (7), pp. 0734071–073407-4.
    9. 9)
      • 17. Sarto, M.S., Tamburrano, A., D'Amore, M.: ‘New electron-waveguide-based modeling for carbon nanotube interconnects’. IEEE Trans. Nanotechnol., 2009, 8, (2), pp. 214225.
    10. 10)
      • 16. Naeemi, A., Meindl, J.D.: ‘Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems’, IEEE Trans. Electr. Device, 2008, 55, (10), pp. 25742582.
    11. 11)
      • 25. Moaiyeri, M.H., Hajamohannadi, Z., Khezeli, M.R., et al: ‘Effective reduction in crosstalk effects in quaternary integrated circuits using mixed carbon nanotube bundle interconnects’, ECS J. Solid State Sci. Technol., 2018, 7, (5), pp. M69M76.
    12. 12)
      • 27. Kumar, M.G., Chandel, R., Agrawal, Y.: ‘An efficient crosstalk model for coupled multiwalled carbon nanotube interconnects’, IEEE Trans. Electromagn. Compatibil., 2018, 60, (2), pp. 487496.
    13. 13)
      • 32. Khezeli, M.R., Moaiyeri, M.H., Jalali, A.: ‘Active shielding of MWCNT bundle interconnects: an efficient approach to cancellation of crosstalk-induced functional failures in ternary logic’, IEEE Trans. Electromagn. Compatibil., 2019, 61, (1), pp. 100110.
    14. 14)
      • 22. Das, D., Rahaman, H.: ‘Carbon nanotube and graphene nanoribbon interconnects’ (CRC Press, Boca Raton, 2015).
    15. 15)
      • 31. Luo, J., Wei, L., Lee, C.S., et al: ‘Compact model for carbon nanotube field-effect transistors including nonidealities and calibrated with experimental data down to 9-nm gate length’, IEEE Trans. Electron Devices, 2013, 60, (6), pp. 18341843.
    16. 16)
      • 20. Das, D., Rahaman, H.: ‘Crosstalk overshoot/undershoot analysis and its impact on gate oxide reliability in multi-wall carbon nanotube interconnects’, J. Comput. Electron., 2011, 10, pp. 360372.
    17. 17)
      • 7. Li, H., Xu, C., Srivastava, N., et al: ‘Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects’, IEEE Trans. Electron Devices, 2009, 56, (9), pp. 17991821.
    18. 18)
      • 15. Naeemi, A., Meindl, J.D.: ‘Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects’, IEEE Electr. Device Lett.., 2007, 28, (2), pp. 135138.
    19. 19)
      • 30. Park, J.Y., Rosenblatt, S., Yaish, Y., et al: ‘Electron-phonon scattering in metallic single-walled carbon nanotubes’, Nano Lett., 2003, 4, (3), pp. 517520.
    20. 20)
      • 11. Sahoo, M., Ghosal, P., Rahaman, H.: ‘Modeling and analysis of crosstalk induced effects in multiwalled carbon nanotube bundle interconnects: an ABCD parameter-based approach’, IEEE Trans. Nanotechnol., 2015, 14, (2), pp. 259274.
    21. 21)
      • 34. Kumbhare, V.R., Paltani, P.P., Venkataiah, C., et al: ‘Analytical study of bundled MWCNT and edged MLGNR interconnects: impact on propagation delay and area’, IEEE Trans. Nanotechn. Lett., 2019, 18, pp. 606610.
    22. 22)
      • 23. Majumder, M.K., Kumar, J., Kumar, V.R., et al: ‘Performance analysis for randomly distributed mixed carbon nanotube bundle interconnects’, Micro Nano Lett., 2014, 9, (11), pp. 792796.
    23. 23)
      • 24. Rai, M.K., Garg, H., Kaushik, B.K.: ‘Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects’, J. Electron. Mater., 2017, 46, (8), pp. 53245337.
    24. 24)
      • 6. Fathi, D., Forouzandeh, B., Mohajerzadeh, S., et al: ‘Accurate analysis of carbon nanotube interconnects using transmission line model’, IET Micro Nano Lett., 2009, 4, (2), pp. 116121.
    25. 25)
      • 8. Iijima, S., Ichihashi, T.: ‘Single-shell carbon nanotubes of 1-nm diameter’, Nature, 1993, 363, pp. 603605.
    26. 26)
      • 12. Singh, A., Dhiman, R.: ‘Proposal and analysis of mixed CNT bundle for sub-threshold interconnects’, IEEE Trans. Nanotechnol. Lett., 2019, 18, pp. 584588.
    27. 27)
      • 26. International Technology Roadmap for Semiconductors (ITRS), Edition 2013. Available at http://www.itrs2.net, Accessed 15 September 2019.
    28. 28)
      • 35. Majumder, M.K., Pandya, N.D., Kaushik, B.K., et al: ‘Analysis of MWCNT and bundled SWCNT interconnects: impact on crosstalk and area’, IEEE Electron Device Lett., 2012, 33, (8), pp. 11801182.
    29. 29)
      • 3. Agrawal, Y., Kumar, M.G., Chandel, R.: ‘Comprehensive model for high-speed current-mode signaling in next generation MWCNT bundle interconnect using FDTD technique’, IEEE Trans. Nanotechnol., 2016, 15, (4), pp. 590598.
    30. 30)
      • 9. Majumder, M.K., Kaushik, B.K., Manhas, S.K.: ‘Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects’, IEEE Trans. Electromagn. Compat., 2014, 56, (6), pp. 16661673.
    31. 31)
      • 33. Hamedani, S.G., Moaiyeri, M.H.: ‘Comparative analysis of the crosstalk effects in multilayer graphene nanoribbon and MWCNT interconnects in sub-10 nm technologies’,IEEE Trans. Electromagn. Compatibil., 2020, 62, (2), pp. 561570.
    32. 32)
      • 21. Das, D., Rahaman, H.: ‘Modeling of single-wall carbon nanotube interconnects for different process, temperature, and voltage conditions and investigating timing delay’, J. Comput. Electron., 2012, 11, pp. 349363.
    33. 33)
      • 14. Naeemi, A., Meindl, J.D.: ‘Compact physical models for multiwall carbon-nanotube interconnects’, IEEE Electr. Device Lett., 2006, 27, (5), pp. 338340.
    34. 34)
      • 13. Kumar, A., Kumar, V.R., Kaushik, B.K.: ‘Transient analysis of crosstalk induced effects in mixed CNT bundle interconnects using FDTD technique’, IEEE Trans. Electromagn. Compatibil., 2019, 61, (5), pp. 16211629.
    35. 35)
      • 10. Subash, S., Kolar, J., Chowdhury, M.H.: ‘A new spatially rearranged bundle of mixed carbon nanotubes as VLSI interconnection’, IEEE Trans. Nanotechnol., 2013, 12, (1), pp. 312.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0516
Loading

Related content

content/journals/10.1049/iet-cds.2019.0516
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading