access icon free Simulator of semiconductor devices for multivalued logic

Multivalued logic (MVL) is an effective way to increase device integration in semiconductor circuits. The major problem for MVL implementation is the availability of proper semiconductor devices. Different quantum structures and their application in different semiconductor devices help them implement the MVL circuit. In this work, the designed graphic user interface will provide more flexibility to the user to highlight the application of different semiconductor devices for MVL implementation. Users can experience the variation of device's characteristics and their feasibility in the application of MVL effectively with this software package.

Inspec keywords: multivalued logic circuits; software packages; graphical user interfaces; logic design

Other keywords: quantum structures; proper semiconductor devices; MVL implementation; semiconductor circuits; MVL circuit; multivalued logic; device integration; graphic user interface

Subjects: Logic and switching circuits; Logic design methods; Digital circuit design, modelling and testing; Logic circuits; Graphical user interfaces

References

    1. 1)
      • 10. Karmakar, S., Gogna, M., Suarez, E., et al: ‘3-State behavior of quantum dot gate FETs with lattice matched insulator’. Proc. of 2009 Nanoelectronic Devices for Defense and Security, Fort Lauderdale, FL, USA, September 2009.
    2. 2)
      • 20. Karmakar, S., Jain, F.C.: ‘Design of three bit ADC and DAC using spatial wave-function switched (SWS) FETs’, Silicon, 2016, 8, (3), pp. 369379.
    3. 3)
      • 1. Ackermann, R.: ‘An Introduction to many-valued logics’ (Routledge and Kegan Paul, London, 1967).
    4. 4)
      • 27. Jazaeri, F., Sallese, J.M.: ‘Charge based EPFL HEMT model’, IEEE Trans. Electron. Devices, 2019, 66, (3), pp. 12181229.
    5. 5)
      • 7. Lin, S., Kim, Y., Lombardi, F.: ‘CNTFET-based design of ternary logic gates and arithmetic circuits’, IEEE Trans. Nanotechnol., 2011, 10, (2), pp. 217225.
    6. 6)
      • 21. Karmakar, S., Chandy, J.A., Jain, F.C.: ‘Unipolar logic gates based on spatial wave-function switched FETs’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (4), pp. 609618.
    7. 7)
      • 28. Prodromakis, T., Toumazou, C., Chua, L.: ‘Two centuries of memristors’, Nat. Mater., 2012, 11, pp. 478481.
    8. 8)
      • 16. Karmakar, S., Chandy, J.A., Jain, F.C.: ‘Eight-bit ADC using non-volatile flash memory’, IET Circuits Devices Syst., 2019, 13, (1), pp. 98102..
    9. 9)
      • 26. Wang, J., Al-Khalidi, A., Zhang, C., et al: ‘Resonant tunneling diode as high speed optical/electronic transmitter’. 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Liverpool, UK, 11–13 September 2017.
    10. 10)
      • 17. Karmakar, S., Gogna, M., Jain, F.C.: ‘Fabrication of quantum dot gate non-volatile memory (QDNVM) based comparator’, Micro Nano Lett., 2019, 14, pp. 947951.
    11. 11)
      • 14. Karmakar, S., Jain, F.C.: ‘Ternary SRAM using quantum dot gate field effect transistor (QDGFET)’, Micro Nano Lett., 2015, 10, pp. 621624.
    12. 12)
      • 24. Lin, H.C.: ‘Resonant tunneling diodes for multi-valued digital applications’. Proc. 24th IEEE Int. Symp. Multiple – Valued Logic, Boston, Massachusetts, USA, 1994, pp. 188195.
    13. 13)
      • 4. Huang, R., Wu, H.M., Kang, J.F., et al: ‘Challenges of 22 nm and beyond CMOS technology’, Sci. China Ser. F Inf. Sci., 2009, 52, (9), pp. 14911533.
    14. 14)
      • 6. Raychowdhury, A., Roy, K.: ‘A novel multiple-valued logic design using ballistic carbon nanotube FETs’. Proc. of Int. Symp. on Multiple-Valued Logic, Toronto, ON, Canada, 2004, pp. 1419.
    15. 15)
      • 2. Critchlow, D.L.: ‘MOSFET scaling – the driver of VLSI technology’, Proc. IEEE, 1999, 87, pp. 659667.
    16. 16)
      • 12. Karmakar, S., Gogna, M., Suarez, E., et al: ‘Three state quantum dot gate FET in silicon-on-insulator’, IET Circuits Devices Syst., 2015, 9, (1), pp. 18.
    17. 17)
      • 25. Forster, A.: ‘Resonant tunnelling diodes: the effect of structural properties on their performance’, in Helbig, Reinhard (Ed.): ‘Advances in Solid State Physics’, vol. 33, (Springer, Berlin, Heidelberg, 1993), pp. 3762.
    18. 18)
      • 22. Karmakar, S., Chandy, J.A., Jain, F.C.: ‘Design of four state inverter based on spatial-wavefunction switched FETs’, Int. J. Electron. Lett., 2015, 3, pp. 225236.
    19. 19)
      • 8. Taghavi, A., Carta, C., Meister, T., et al: ‘A CNTFET oscillator at 461 MHz’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (6), pp. 578580.
    20. 20)
      • 13. Karmakar, S., Jain, F.C.: ‘Circuit model of different quantum dot based field effect transistors’, Silicon, 2015, 7, (1), pp. 1526.
    21. 21)
      • 23. Capasso, F., Kiehl, R.A.: ‘Resonant tunneling transistor with quantum well base and high –energy injection: a new negative differential resistance device’, J. Appl. Phys., 1985, 58, (3), pp. 13661368.
    22. 22)
      • 11. Karmakar, S.: ‘Application of quantum dot gate FETs (QDGFETs) in ternary logic image inversion’, Analog Integr. Circuits Signal Process., 2016, 86, (240), pp. 18.
    23. 23)
      • 9. Lin, S., Kim, Y.-B., Lombardi, F.: ‘Design of a CNTFET-based SRAM cell by dual-chirality selection’, IEEE Trans. Nanotechnol.,2010, 9, (1), pp. 3037.
    24. 24)
      • 19. Karmakar, S., Gogna, M., Jain, F.C.: ‘Application of quantum dot gate non-volatile memory (QDNVM) in image segmentation’, Signal. Image. Video. Process., 2016, 10, (3), pp. 551558.
    25. 25)
      • 15. Goodnick, S.M., Bird, J.: ‘Quantum effects and single electron devices’, IEEE Trans. Nanotechnol., 2003, 2, (4), pp. 368385.
    26. 26)
      • 3. Imtiaz, S.M.S., El-Ghazaly, S.M.: ‘Performance of MODFET and MESFET: a comparative study including equivalent circuits using combined electromagnetic and solid-state simulator’, IEEE Trans. Microw. Theory Tech., 1998, 46, (7), pp. 923931.
    27. 27)
      • 29. Zidan, M.A., Strachan, J.P., Lu, W.D.: ‘The future of electronics based on memristive systems’, Nat. Electron., 2018, 1, pp. 2229.
    28. 28)
      • 18. Karmakar, S., Chandy, J.A., Jain, F.C.: ‘Implementation of six bit ADC and DAC using quantum dot gate non-volatile memory’, J. Signal. Process. Syst., 2014, 75, pp. 209216.
    29. 29)
      • 5. Mistry, K., Allen, C., Auth, C., et al: ‘A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging’. IEDM Technical Digest, Washington, DC, USA, 2007, pp. 247250.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0415
Loading

Related content

content/journals/10.1049/iet-cds.2019.0415
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading