Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Temperature sensitivity analysis of SGO metal strip JL TFET

Temperature sensitivity analysis of SGO metal strip JL TFET

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Temperature sensitivity is one of the major concern in conventional stacked gate-oxide junctionless tunnel-field-effect transistor (SGO-JL-TFET). In this regard, the authors have investigated the sensitivity toward the temperature variation of the SGO-JL double-gate TFET with low work-function live strip (LWLS-SGO-JL-TFET) and without LWLS-SGO-JL-TFET (SGO-JL-TFET). Furthermore, they have analysed and compared the impact of operating temperature variation on the DC, analogue/radiofrequency and linearity performances of both the devices with the help of simulation results obtained using technology computer-aided design tool. It can be stated that the proposed device is less sensitive toward the temperature variation in terms of carrier concentration, electric field, on-state current and off-state current, as compared with conventional SGO-JL-TFET. Apart from these parameters, proposed device also demonstrates better temperature sensitivity in terms of analogue performance parameters such as transconductance cut-off frequency , gain bandwidth product and maximum oscillating frequency . Therefore, the proposed device can be a potential candidate for cryogenics and high-temperature applications.

References

    1. 1)
      • 3. Lu, W., Lieber, C.M.: ‘Semiconductor nanowires’, J. Phys. D, Appl. Phys., 2006, 39, (21), pp. R387R406.
    2. 2)
      • 28. Madan, J., Chaujar, R.: ‘Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability’, IEEE Trans. Device Mater. Reliab., 2016, 16, (2), pp. 227234.
    3. 3)
      • 2. Cui, Y., Zhong, Z., Wang, D., et al: ‘High-performance silicon nanowire field-effect transistors’, Nano Lett., 2003, 3, (2), pp. 149152.
    4. 4)
      • 8. Avci, U.E., Morris, D.H., Young, I.A.: ‘Tunnel-field-effect transistors: prospects and challenges’, IEEE J. Electron Devices Soc., 2015, 3, (3), pp. 8895.
    5. 5)
      • 4. Gupta, S., Nigam, K., Pandey, S., et al: ‘Effect of interface trap charges on performance variation of heterogeneous gate dielectric junctionless TFET’, IEEE Trans. Electron Devices, 2017, 64, (11), pp. 47314737.
    6. 6)
      • 25. Lin, R., Lu, Q., Ranade, P., et al: ‘An adjustable work-function technology using Mo gate for CMOS devices’, IEEE Electron Device Lett., 2002, 23, (1), pp. 4951.
    7. 7)
      • 18. Lee, G., Jang, J.S., Choi, W.Y.: ‘Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors’, Semicond. Sci. Technol., 2013, 28, (5), pp. 052001052005.
    8. 8)
      • 10. Kumar, S., Singh, K.S., Nigam, K., et al: ‘Dual-material dual-oxide double-gate TFET for improvement in DC characteristics, analog/RF and linearity performance’, Appl. Phys. A, 2019, 125, (5), pp. 353360.
    9. 9)
      • 20. Chiang, M.H., Lin, J.N., Kim, K., et al: ‘Random dopant fluctuation in limited-width FinFET technologies’, IEEE Trans. Electron Devices, 2007, 54, (8), pp. 20552060.
    10. 10)
      • 7. Seabaugh, A.C., Zhang, Q.: ‘Low-voltage tunnel transistors for beyond CMOS logic’, Proc. IEEE, 2010, 98, (12), pp. 20952110.
    11. 11)
      • 23. Yadav, S., Madhukar, R., Sharma, D., et al: ‘A new structure of electrically doped TFET for improving electronic characteristics’, Appl. Phys. A, 2018, 124, (7), pp. 517526.
    12. 12)
      • 34. Nigam, K., Kondekar, P., Sharma, D.: ‘DC characteristics and analog/RF performance of novel polarity control GaAs–Ge-based tunnel-field-effect transistor’, Superlattices Microstruct., 2016, 92, pp. 224231.
    13. 13)
      • 26. Venkatesh, P., Nigam, K., Pandey, S., et al: ‘Impact of interface trap charges on performance of electrically doped tunnel FET with heterogeneous gate dielectric’, IEEE Trans. Device Mater. Reliab., 2017, 17, (1), pp. 245252.
    14. 14)
      • 12. Nayfeh, O., Chleirigh, C., Hennessy, J.: ‘Design of tunneling field-effect transistors using strained silicon/strained germanium type-II staggered heterojunctions’, IEEE Electron Device Lett., 2008, 29, (9), pp. 10741077.
    15. 15)
      • 36. Chandan, B.V., Nigam, K., Pandey, S., et al: ‘Temperature sensitivity analysis on analog/RF and linearity metrics of electrically doped tunnel FET’. Conf. Information and Communication Technology, Gwalior, India, 2017, pp. 15.
    16. 16)
      • 9. Esseni, D., Guglielmini, M., Kapidani, B., et al: ‘Tunnel FETs for ultra-low-voltage digital VLSI circuits: part I – device-circuit interaction and evaluation at device level’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2014, 22, (12), pp. 24882498.
    17. 17)
      • 17. Cui, N., Liang, R., Xua, J.: ‘Heteromaterial gate tunnel-field-effect transistor with lateral energy band profile modulation’, Appl. Phys. Lett., 2011, 98, pp. 142105-1142105-3.
    18. 18)
      • 15. Jhaveri, R., Nagavarapu, N.V., Woo, J.C.S.: ‘Effect of pocket doping and annealing schemes on the source-pocket tunnel-field-effect transistor’, IEEE Trans. Electron Devices, 2011, 58, (1), pp. 8086.
    19. 19)
      • 1. Yan, R.H., Abbas, O., Lee, K.F.: ‘Scaling the Si MOSFET: from bulk to SOI to bulk’, IEEE Trans. Electron Devices, 1992, 39, (7), pp. 17041710.
    20. 20)
      • 24. Yadav, S., Lemtur, A., Sharma, D., et al: ‘Effective approach to enhance DC and high-frequency performance of electrically doped TFET’, Micro & Nano Lett.,2018, 13, (10), pp. 14691474.
    21. 21)
      • 11. Saurabh, S., Kumar, M.J.: ‘Impact of strain on drain current and threshold voltage of nanoscale double-gate tunnel-field-effect transistor: theoretical investigation and analysis’, Jpn. J. Appl. Phys., 2009, 48, p.064503.
    22. 22)
      • 5. Boucart, K., Ionescu, A.M.: ‘Double-gate tunnel FET with high-k gate dielectric’, IEEE Trans. Electron Devices, 2007, 54, (7), pp. 17251733.
    23. 23)
      • 13. Mohata, D., Mookerjea, S., Agrawal, A.: ‘Experimental staggered source and N+ pocket-doped channel III–V tunnel-field-effect transistors and their scalabilities’, Appl. Phys. Express, 2011, 4, (2), pp. 024105024107.
    24. 24)
      • 22. Bhardwaj, E., Nigam, K., Chaturvedi, S., et al: ‘Effect of ITCs on gate stacked JL-TFET based on work-function engineering’, Micro & Nano Lett., 2019, 14, (12), pp. 12381243.
    25. 25)
      • 21. Nigam, K., Kondekar, P., Sharma, D., et al: ‘A new approach for design and investigation of junctionless tunnel FET using electrically doped mechanism’, Superlattices Microstruct., 2016, 98, pp. 17.
    26. 26)
      • 35. Shrivastava, V., Kumar, A., Sahu, C., et al: ‘Temperature sensitivity analysis of dopingless charge-plasma transistor’, Solid-State Electron., 2016, 117, pp. 9499.
    27. 27)
      • 19. Lee, M.J., Choi, W.Y.: ‘Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors’, IEEE Electron Device Lett., 2012, 33, (10), pp. 14591461.
    28. 28)
      • 27. Ghosh, P., Bhowmick, B.: ‘Effect of temperature on reliability issues of ferroelectric dopant segregated Schottky barrier tunnel-field-effect transistor (Fe DS-SBTFET)’, Silicon, 2019, 12, (53), pp. 18.
    29. 29)
      • 16. Chang, H., Adams, B., Chien, P., et al: ‘Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing’, IEEE Trans. Electron Devices, 2013, 60, (1), pp. 9296.
    30. 30)
      • 30. Ghosh, P., Haldar, S., Gupta, R.S., et al: ‘An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design’, IEEE Trans. Electron Devices, 2012, 59, (12), pp. 32633268.
    31. 31)
      • 29. Ghosh, B., Akram, M.W.: ‘Junctionless tunnel-field-effect transistor’, IEEE Electron Device Lett., 2013, 34, (5), pp. 584586.
    32. 32)
      • 32. Ward, D.E., Dutton, R.W.: ‘A charge oriented model for MOS transistor capacitances’, IEEE J. Solid-State Circ., 1978, 13, (5), pp. 703708.
    33. 33)
      • 14. Cao, W., Yao, C.J., Jiao, G.F.: ‘Improvement in reliability of tunneling field-effect transistor with p–n–i–n structure’, IEEE Trans. Electron Devices, 2011, 58, (7), pp. 21222126.
    34. 34)
      • 33. Nigam, K., Pandey, S., Kondekar, P.N., et al: ‘Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel-field-effect transistor’, Superlattices Microstruct., 2016, 97, pp. 598605.
    35. 35)
      • 37. Sarkar, A., Das, A.K., De, S., et al: ‘Effect of gate engineering in double-gate MOSFETs for analog/RF applications’, Microelectron. J., 2012, 43, (11), pp. 873882.
    36. 36)
      • 6. Kim, S.W., Kim, J.H., Liu, T.J.K., et al: ‘Demonstration of L-shaped tunnel-field-effect transistors’, IEEE Trans. Electron Devices, 2016, 63, (4), pp. 17741778.
    37. 37)
      • 31. Nigam, K., Pandey, S., Kondekar, P.N., et al: ‘Temperature sensitivity analysis of polarity controlled electrostatically doped hetero-TFET’. 12th Conf. Microelectronics and Electronics (PRIME), Lisbon, Portugal, 2016, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0412
Loading

Related content

content/journals/10.1049/iet-cds.2019.0412
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address