Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Cryptanalysis of a random number generator based on continuous-time chaos

This study presents the algebraic cryptanalysis of a continuous-time chaotic random number generator (RNG) based on a Zhongtang chaotic system. The chaos-based RNG provides key values for logic encryption, round key formation and the substitution box (S-box) generation steps in AES (advanced encryption standard). In this study, an attack method is proposed to exploit the weaknesses of the chaos-based RNG used in this cryptographic system. By observing a chaotic state variable and knowing the structure of the target RNG, output bit sequence of the target RNG is reproduced by a clone RNG used in master–slave synchronisation scheme. The feasibility of the attack system is confirmed through simulation and numerical results. Through this attack method, the same S-box parameters and key values can be obtained which can be used for decryption of the proposed encryption algorithm. This study targets a specific continuous-time chaos-based RNG and the associated cryptographic system as a case study. However, the cryptanalysis method described in this study is applicable to any continuous-time or discrete-time chaos-based RNGs. Therefore, this study highlights the security vulnerabilities of chaos-based RNGs and emphasises that deterministic chaos phenomena itself should not be considered as the actual source of randomness.

References

    1. 1)
      • 2. Jun, B., Kocher, P.: ‘The intel random number generator’, Cryptogr. Res. Inc. White Paper, 1999, 27, pp. 18.
    2. 2)
      • 25. Li, S., Chen, G., Alvarez, G.: ‘Return-map cryptanalysis revisited’, Int. J. Bifurcation Chaos, 2006, 16, (5), pp. 15571568.
    3. 3)
      • 20. Çavuşoğlu, Ü., Kaçar, S., Zengin, A., et al: ‘A novel hybrid encryption algorithm based on chaos and S-AES algorithm’, Nonlinear Dyn., 2018, 92, (4), pp. 17451759.
    4. 4)
      • 27. Alvarez, G., Montoya, F., Romera, M., et al: ‘Breaking two secure communication systems based on chaotic masking’, IEEE Trans Circuits Syst II, Express Briefs, 2004, 51, (10), pp. 505506.
    5. 5)
      • 21. Ergün, S.: ‘On the security of chaos based ‘true’ random number generators’, IEICE Trans. Fundam. Electron., Commun. Comput. Sci., 2016, 99, (1), pp. 363369.
    6. 6)
      • 10. Ergün, S.: ‘Method and hardware for generating random numbers using dual oscillator architecture and continuous-time chaos’. U.S. Patent 8612501, December 2013.
    7. 7)
      • 5. Menezes, A., van Oorschot, P., Vanstone, S.A.: ‘Handbook of applied cryptography’ (CRC Press, Boca Raton, 1996, 1st edn.).
    8. 8)
      • 4. Schneier, B.: ‘Foundations – applied cryptography’ (John Wiley & Sons, Inc., Indianapolis, 2015, 2nd edn.).
    9. 9)
      • 18. Ergün, S., Güler, U., Asada, K.: ‘A high speed ic truly random number generator based on chaotic sampling of regular waveform’, IEICE Trans. Fundam. Electron., Commun. Comput. Sci., 2011, 94, (1), pp. 180190.
    10. 10)
      • 16. Ergün, S.: ‘Cryptanalysis of a double scroll based ‘true’ random bit generator’. Proc. IEEE Int. Midwest Symp. on Circuits and Systems, Fort Collins, USA, 2015, pp. 14.
    11. 11)
      • 29. Pecora, L.M., Carroll, T.L., Johnson, G.A., et al: ‘Fundamentals of synchronization in chaotic systems, concepts, and applications’, Chaos, Interdiscip. J. Nonlinear Sci., 1997, 7, (4), pp. 520543.
    12. 12)
      • 1. Shannon, C.E.: ‘Communication theory of secrecy systems*’, Bell Syst. Tech. J., 1949, 28, (4), pp. 656715.
    13. 13)
      • 31. Aguirre, L.A., Letellier, C.: ‘Controllability and synchronizability: are they related?’, Chaos Solitons Fractals, 2016, 83, pp. 242251.
    14. 14)
      • 17. Ergün, S., Güler, Ü., Asada, K.: ‘IC truly random number generators based on regular & chaotic sampling of chaotic waveforms’, IEICE Nonlinear Theory Appl., 2011, 2, (2), pp. 246261.
    15. 15)
      • 13. Ergün, S., Özoğuz, S.: ‘Truly random number generators based on non-autonomous continuous-time chaos’, Int. J. Circuit Theory Appl., 2010, 38, (1), pp. 124.
    16. 16)
      • 24. Casdagli, M.: ‘Nonlinear prediction of chaotic time series’, Phys. D, Nonlinear Phenom., 1989, 35, (3), pp. 335356.
    17. 17)
      • 14. Ergün, S.: ‘Regional random number generator from a cross-coupled chaotic oscillator’. Proc. IEEE Int. Midwest Symp. on Circuits and Systems, Seoul, South Korea, 2011, pp. 14.
    18. 18)
      • 26. Zhou, C., Lai, C.H.: ‘Extracting messages masked by chaotic signals of time-delay systems’, Phys. Rev. E, 1999, 60, (1), p. 320.
    19. 19)
      • 15. Al-Vahed, A., Sahhavi, H.: ‘An overview of modern cryptography’, World Appl. Program., 2011, 1, (1), pp. 5561.
    20. 20)
      • 30. Carroll, T.L., Pecora, L.M.: ‘Synchronizing chaotic circuits’, IEEE Trans. Circuits Syst., 1991, 38, (4), pp. 453456.
    21. 21)
      • 7. Petrie, C.S., Connelly, J.A.: ‘A noise-based ic random number generator for applications in cryptography’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2000, 47, (5), pp. 615621.
    22. 22)
      • 3. Schrift, A.W., Shamir, A.: ‘On the universality of the next bit test’. Proc. Advances in Cryptology, Santa Barbara, USA, August 1990, pp. 394408.
    23. 23)
      • 23. Farmer, J.D., Sidorowich, J.J.: ‘Predicting chaotic time series’, Phys. Rev. Lett., 1987, 59, (8), p. 845.
    24. 24)
      • 9. Callegari, S., Rovatti, R., Setti, G.: ‘Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos’, IEEE Trans. Signal Process., 2005, 53, (2), pp. 793805.
    25. 25)
      • 12. Özoğuz, S., Elwakil, A.S., Ergün, S.: ‘Cross-coupled chaotic oscillators and application to random bit generation’, IEE Proc., Circuits, Devices Syst., 2006, 153, (5), pp. 506510.
    26. 26)
      • 28. Alvarez, G., Li, S., Montoya, F., et al: ‘Breaking projective chaos synchronization secure communication using filtering and generalized synchronization’, Chaos, Solitons Fractals, 2005, 24, (3), pp. 775783.
    27. 27)
      • 11. Ergün, S.: ‘Compensated true random number generator based on a double-scroll attractor'. Proc. Int. Symp. on Nonlinear Theory and its Applications, Bologna, Italy, 2006, pp. 391394.
    28. 28)
      • 8. Bucci, M., Germani, L., Luzzi, R., et al: ‘A high-speed ic random-number source for smartcard microcontrollers’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2003, 50, (11), pp. 13731380.
    29. 29)
      • 22. Wolf, A., Swift, J.B., Swinney, H.L., et al: ‘Determining lyapunov exponents from a time series’, Phys. D, Nonlinear Phenom., 1985, 16, (3), pp. 285317.
    30. 30)
      • 6. Bagini, V., Bucci, M.: ‘A design of reliable true random number generator for cryptographic applications’. Proc. Int. Workshop on Cryptographic Hardware and Embedded Systems, Berlin, 1999, pp. 204218.
    31. 31)
      • 19. Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., et al: ‘A novel approach for strong S-Box generation algorithm design based on chaotic scaled zhongtang system’, Nonlinear Dyn., 2017, 87, (2), pp. 10811094.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0356
Loading

Related content

content/journals/10.1049/iet-cds.2019.0356
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address