Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modelling for triple gate spin-FET and design of triple gate spin-FET-based binary adder

In this study, an InAs channel-based triple gate spin-field effect transistor (FET) model is proposed. The proposed triple-gate spin-FET offers a high density of integration, consumes low power and offers very high switching speed. By incorporating the suitable parameters like channel length, spin diffusion length, channel resistance and junction polarisation, the modelled triple gate spin-FET is then used to implement 3-input XOR, 3-input XNOR and majority gate functions. The designs of 3-input XOR and majority gates were achieved keeping in view that the sum operation of a 1-bit full adder is obtained through XOR gate and the carry operation of 1-bit full adder is obtained through majority gate. Therefore, for designing a 1-bit full adder, only two spin-FETs will be required which signifies the compact nature of the design. In addition, a 2-bit ripple adder is designed with cascading two 1-bit full-adders. Finally, a comparative analysis of the proposed gates and 1-bit full adder with the reported work and conventional CMOS design was carried out in terms of employed number of devices, power consumption and speed. The analysis shows that proposed gates/adder offer better performance than the reported work and conventional CMOS designs.

References

    1. 1)
      • 7. Datta, S., Das, B.: ‘Electronic analog of the electro-optic modulator’, Appl. Phys. Lett., 1990, 56, (7), p. 665467.
    2. 2)
      • 9. Wang, G., Wang, Z., Klein, J.O., et al: ‘Modelling for spin-FET and design of spin-FET-based logic gates’, IEEE Trans. Magn., 2017, 53, (11), pp. 11.
    3. 3)
      • 4. Sugahara, S.: ‘Spin MOSFETs as a basis for integrated spin-electronics’. Proc. of 2005 5th IEEE Conf. on Nanotechnology, Nagoya, Japan, 2005.
    4. 4)
      • 19. Takahashi, S., Maekawa, S.: ‘Spin injection and detection in magnetic nanostructures’, Phys. Rev. B, 2003, 67, (5), p. 52409.
    5. 5)
      • 21. Rakheja, S., Naeemi, A.: ‘Interconnect analysis in spin-torque devices: performance modelling, sptimal repeater insertion, and circuit-size limits’. In Proc. 13th Int. Symp. Quality Electron Design (ISQED), Santa Clara, CA, USA, 2012, pp. 283290.
    6. 6)
      • 1. Yurchuk, E., Müller, J., Paul, J., et al: ‘Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors', IEEE Trans. Electron. Dev., 2014, 61, (11), pp. 36993706.
    7. 7)
      • 3. Lee, D., Fong, X., Roy, K.: ‘R-MRAM: A ROM-embedded STT MRAM cache’, IEEE Electron. Device L., 2013, 34, (10), pp. 12561258.
    8. 8)
      • 5. Koo, H.C., Jung, I., Kim, C.: ‘Spin-based complementary logic device using Datta-Das transistor’, IEEE Trans. Electron. Dev., 2015, 62, (9), pp. 30563060.
    9. 9)
      • 13. Sato, Y., Gozu, S., Kita, T., et al: ‘Study for realization of spin-polarized field effect transistor in In0.75Ga0.25As/In0.75Al0.25As heterostructure’, Physica E, 2002, 12, (1-4), pp. 399402.
    10. 10)
      • 8. Shirotori, S., Yoda, H., Ohsawa, Y., et al: ‘Voltage-control spintronics memory with a self-aligned heavy-metal electrode’, IEEE Trans. Magn., 2017, 53, (11), pp. 27.6.127.6.4.
    11. 11)
      • 2. Saxena, S., Mehra, R.: ‘Low-power and high-speed 13 T SRAM cell using FinFETs’, IET Circuit Device Syst., 2016, 11, (3), pp. 250255.
    12. 12)
      • 16. Sasaki, T., Ando, Y., Kameno, M., et al: ‘Spin transport in nondegenerate Si with a spin MOSFET structure at room temperature’, Phys. Rev. Appl., 2014, 2, (3), p. 34005.
    13. 13)
      • 6. Pramanik, S., Bandyopadhyay, S., Cahay, M.: ‘Spin transport in nanowires’. Third IEEE Conf. on Nanotechnology, IEEE-NANO 2003, Virginia, 2003, pp. 8790.
    14. 14)
      • 15. Wang, Z., Zhao, W., Kang, W., et al: ‘Nonvolatile Boolean logic block based on ferroelectric tunnel memristor’, IEEE Trans. Magn., 2014, 50, (11), pp. 14.
    15. 15)
      • 11. Kim, J.H., Bae, J., Min, B.C., et al: ‘All-electric spin transistor using perpendicular spins’, J. Magn. Mater., 2015, 403, pp. 7780.
    16. 16)
      • 17. Chang, L.-T., Fischer, I. A., Tang, J., et al: ‘Electrical detection of spin transport in Si two-dimensional electron gas systems’, Nanotechnology, 2016, 27, (36), p. 365701.
    17. 17)
      • 20. Dresselhaus, G.: ‘Spin orbit coupling effects in zinc blende structures’, Phys. Rev., 1955, 100, p. 580.
    18. 18)
      • 12. Koo, H.C., Kwon, J.H., Eom, J., et alControl of spin precession in a spin-injected field effect transistor’, Science, 2009, 325, (5947), pp. 15151518.
    19. 19)
      • 18. Nitta, J, Bergsten, T: ‘Electrical manipulation of spin precession in an InGaAs-based 2DEG due to the rashba spin-orbit interaction’, IEEE Trans. Electron. Dev., 2007, 54, (5), pp. 955960.
    20. 20)
      • 14. Kim, J., Crowell, P.A., Koester, P.A., et al: ‘Spin-based computing: device concepts, current status, and a case study on a high-performance microprocessor’, Proc. IEEE, 2015, 103, (1), pp. 106130.
    21. 21)
      • 10. Wang, G., Wang, Z., Lin, X., et al: ‘Proposal for multi-gate spin field-effect transistor’, IEEE Trans. Magn., 2018, 54, (11), pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0329
Loading

Related content

content/journals/10.1049/iet-cds.2019.0329
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address