access icon free Adaptive multi-resolution framework for fast simulation of power electronic circuits

An adaptive multi-resolution simulation (AMRS) framework for fast and accurate simulation of high-fidelity models of power electronic circuits (PECs) is presented in this study. The wide span of eigenvalues makes PEC simulation prohibitively slow. This problem can be tackled using the proposed approach. Singular perturbation approximation is used to extract simplified models by ignoring the transient contribution of the non-dominant eigenvalues. Simplified models of different orders or resolutions, each corresponding to a particular level of accuracy are derived on the fly at no additional computational cost. The simulation engine is set such that it adaptively switches across resolutions based on a predefined tolerance during the simulation. This approach is advantageous in the sense that instead of simulating the original model over the entire time-range, a combination of the original and simplified models is simulated. The combined use of the original and the simplified models is thus shown to be a powerful tool for efficient and accurate simulation of PECs. The examples illustrated, show that the AMRS approach makes the simulation considerably faster and ensures the complete response of the system is obtained with negligible error. The method is illustrated on a Class-E amplifier and a DC–DC buck–boost converter.

Inspec keywords: power electronics; eigenvalues and eigenfunctions; approximation theory; reduced order systems; DC-DC power convertors

Other keywords: PECs; additional computational cost; complete simulation cycle; adaptive multiresolution simulation framework; efficient simulation; singular perturbation approximation; high-fidelity models; original models; AMRS approach; PEC simulation; adaptive multiresolution framework; nondominant eigenvalues; power electronic circuits; fast simulation; simulation engine

Subjects: Power convertors and power supplies to apparatus; DC-DC power convertors; Interpolation and function approximation (numerical analysis); Power electronics, supply and supervisory circuits

References

    1. 1)
      • 6. Sanders, S.R., Noworolski, J.M., Liu, X.Z., et al: ‘Generalized averaging method for power conversion circuits’. 21st Annual IEEE Conf. on Power Electronics Specialists, San Antonio, TX, USA, 1990, pp. 333340.
    2. 2)
      • 4. Kato, T., Kataoka, T.: ‘Computer-aided analysis of a power electronic circuit by a new multirate method’. 29th Annual IEEE Power Electronics Specialists Conf., Fukuoka, Japan, 1998, vol. 2, pp. 10761083.
    3. 3)
      • 20. Osipov, D.: ‘Adaptive nonlinear model reduction for fast power system simulation’, University of Tennessee, Knoxville, 2018.
    4. 4)
      • 37. Wu, H., Dougal, R.: ‘Dynamic multi-resolution modeling of power super capacitor’. Proc. of the 37th Annual North American Power Symp., 2005, Ames, IA, USA, 2005, pp. 241246.
    5. 5)
      • 52. Feng, L., Korvink, J.G., Benner, P.: ‘A fully adaptive scheme for model order reduction based on moment matching’, IEEE Trans. Compon. Packag. Manuf. Technol., 2015, 5, (12), pp. 18721884.
    6. 6)
      • 12. Nahvi, S.A., Nabi, M., Janardhanan, S.: ‘Piece-wise quasi-linear approximation for nonlinear model reduction’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2013, 32, (12), pp. 20092013.
    7. 7)
      • 48. Benner, P.: ‘Numerical linear algebra for model reduction in control and simulation’, GAMM-Mitt., 2006, 29, (2), pp. 275296.
    8. 8)
      • 19. Osipov, D., Sun, K.: ‘Adaptive nonlinear model reduction for fast power system simulation’, IEEE Trans. Power Syst., 2018, 33, (6), pp. 67466754.
    9. 9)
      • 42. Krein, P.T., Bass, R.M.: ‘Autonomous control technique for high-performance switches’, IEEE Trans. Ind. Electron., 1992, 39, (3), pp. 215222.
    10. 10)
      • 38. Wu, H., Dougal, R., Jin, C.: ‘Modeling power diode by combining the behavioral and the physical model’. 31st Annual Conf. of IEEE Industrial Electronics Society, 2005. IECON 2005, Raleigh, NC, USA, 2005, p. 6.
    11. 11)
      • 34. Khan, H., Bazaz, M.A., Nahvi, S.A.: ‘Singular perturbation-based model reduction of power electronic circuits’, IET Circuits Devices Syst., 2019, 13, (4), pp. 471478.
    12. 12)
      • 39. Dougal, R.A., Gao, L., Liu, S.: ‘Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation’, J. Power Sources, 2004, 126, (1), pp. 250257.
    13. 13)
      • 50. Antoulas, A.: ‘Approximation of large-scale dynamical systems’ (Society for Industrial and Applied Mathematics, USA, 2005).
    14. 14)
      • 53. Suetsugu, T., Kazimierczuk, M.K.: ‘Design procedure of class-E amplifier for off-nominal operation at 50% duty ratio’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2006, 53, (7), pp. 14681476.
    15. 15)
      • 7. Fung, K.K., Hui, S.Y.R.: ‘Fast simulation of multistage power electronic systems with widely separated operating frequencies’, IEEE Trans. Power Electron., 1996, 11, (3), pp. 405412.
    16. 16)
      • 46. ‘PLECS user manual’. Available at www.plexim.com.
    17. 17)
      • 21. Evans, P.L., Castellazzi, A., Johnson, C.M.: ‘Automated fast extraction of compact thermal models for power electronic modules’, IEEE Trans. Power Electron., 2013, 28, (10), pp. 47914802.
    18. 18)
      • 28. Li, K., Evans, P., Johnson, M.: ‘Developing power semiconductor device model for virtual prototyping of power electronics systems’. 2016 IEEE Vehicle Power and Propulsion Conf. (VPPC), Hangzhou, China, 2016, pp. 16.
    19. 19)
      • 30. Rewienski, M., Lamecki, A., Mrozowski, M.: ‘Greedy multipoint model-order reduction technique for fast computation of scattering parameters of electromagnetic systems’, IEEE Trans. Microw. Theory Tech., 2016, 64, (6), pp. 16811693.
    20. 20)
      • 44. Liberzon, D.: ‘Switching in systems and control’ (Birkhäuser, USA, 2003).
    21. 21)
      • 26. Klis, D., Burgard, S., Farle, O., et al: ‘A self-adaptive model-order reduction algorithm for nonlinear eddy-current problems based on quadratic–bilinear modeling’, IEEE Trans. Magn., 2016, 52, (3), pp. 14.
    22. 22)
      • 41. Massarini, A., Kazimierczuk, M.K.: ‘Self-capacitance of inductors’, IEEE Trans. Power Electron., 1997, 12, (4), pp. 671676.
    23. 23)
      • 23. Evans, P.L., Castellazzi, A., Johnson, C.M.: ‘A design tool for rapid, multi-domain virtual prototyping of power electronic systems’. 2015 IEEE Energy Conversion Congress and Exposition, ECCE, Montreal, QC, Canada, 2015.
    24. 24)
      • 25. Monshizadeh, N., Persis, C.D., van der Schaft, A.J., et al: ‘A novel reduced model for electrical networks with constant power loads’, IEEE Trans. Autom. Control, 2018, 63, (5), pp. 12881299.
    25. 25)
      • 8. Pekarek, S.D., Wasynczuk, O., Walters, E.A., et al: ‘An efficient multirate simulation technique for power-electronic-based systems’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 399409.
    26. 26)
      • 47. ‘PSIM user's guide’. Available at www.powersimtech.com.
    27. 27)
      • 35. Khan, H., Bazaz, M.A., Nahvi, S.A.: ‘Simulation acceleration of high-fidelity nonlinear power electronic circuits using model order reduction’, IFAC-Papers OnLine, 2018, 51, (1), pp. 273278.
    28. 28)
      • 32. Mohamed, K.: ‘Model order reduction method for large-scale RC interconnect and implementation of adaptive digital pi controller’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2019, 27, (10), pp. 24472458.
    29. 29)
      • 9. Liu, H., Daniel, L., Wong, N.: ‘Model reduction and simulation of nonlinear circuits via tensor decomposition’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2015, 34, (7), pp. 10591069.
    30. 30)
      • 1. Deml, C., Turkes, P.: ‘Fast simulation technique for power electronic circuits with widely different time constants’, IEEE Trans. Ind. Appl., 1999, 35, (3), pp. 657662.
    31. 31)
      • 43. ‘IRF 510 datasheet’. Available at https://www.vishay.com/docs/91015/sihf510.pdf.
    32. 32)
      • 31. Li, Z., Shan, J., Gabbert, U.: ‘Inverse compensator for a simplified discrete Preisach model using model-orderreduction approach’, IEEE Trans. Ind. Electron., 2019, 66, (8), pp. 61706178.
    33. 33)
      • 22. Evans, P.L., Castellazzi, A., Johnson, C.M.: ‘Design tools for rapid multidomain virtual prototyping of power electronic systems’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 24432455.
    34. 34)
      • 33. Parang, B., Mohammadi, M., Arefi, M.M.: ‘Residualisation-based model order reduction in power networks with penetration of photovoltaic resources’, IET Gener. Transm. Distrib., 2019, 13, (13), pp. 26192626.
    35. 35)
      • 17. Domínguez, A., Barragán, L.A., Artigas, J.I., et al: ‘Reduced-order model of a half-bridge series resonant inverter for power control in domestic induction heating applications’. 2015 IEEE Int. Conf. on Industrial Technology (ICIT), Seville, Spain, 2015, pp. 25422547.
    36. 36)
      • 16. Nardo, A.D., Femia, N., Nicolo, M., et al: ‘Power stage design of fourth-order DC-DC converters by means of principal components analysis’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28672877.
    37. 37)
      • 14. Ramirez, A., Mehrizi-Sani, A., Hussein, D., et al: ‘Application of balanced realizations for model-order reduction of dynamic power system equivalents’, IEEE Trans. Power Deliv., 2016, 31, (5), pp. 23042312.
    38. 38)
      • 27. Nguyen, T.S., Duc, T.L., Tran, T.S., et al: ‘Adaptive multipoint model order reduction scheme for large-scale inductive PEEC circuits’, IEEE Trans. Electromagn. Compat., 2017, 59, (4), pp. 11431151.
    39. 39)
      • 18. Davoudi, A.: ‘Reduced-order modeling of power electronics components and systems’, University of Illinois at Urbana-Champaign, 2010.
    40. 40)
      • 29. Jia, W., Helenbrook, B.T., Cheng, M.C.: ‘Fast thermal simulation of fin-FET circuits based on a multiblock reduced-order model’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2016, 35, (7), pp. 11141124.
    41. 41)
      • 24. Gu, Y., Bottrell, N., Green, T.C.: ‘Reduced-order models for representing converters in power system studies’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 36443654.
    42. 42)
      • 10. Oyaro, D., Triverio, P.: ‘TurboMOR-RC: an efficient model order reduction technique for RC networks with many ports’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2016, 35, (10), pp. 16951706.
    43. 43)
      • 2. Maksimovic, D., Stankovic, A.M., Thottuvelil, V.J., et al: ‘Modeling and simulation of power electronic converters’, Proc. IEEE, 2001, 89, (6), pp. 898912.
    44. 44)
      • 45. ‘SimPowerSystems user's guide’. Available at www.mathworks.com.
    45. 45)
      • 5. Kato, T., Inoue, K., Fukutani, T., et al: ‘Multirate analysis method for a power electronic system by circuit partitioning’, IEEE Trans. Power Electron., 2009, 24, (12), pp. 27912802.
    46. 46)
      • 51. Davison, E.: ‘A method for simplifying linear dynamic systems’, IEEE Trans. Autom. Control, 1966, 11, (1), pp. 93101.
    47. 47)
      • 36. Chapman, P.L.: ‘Multi-resolution switched system modeling’. 2004 IEEE Workshop on Computers in Power Electronics, Urbana, IL, USA, 2004, pp. 167172.
    48. 48)
      • 49. Benner, P., Quintana-Orti, E.S., Quintana-Orti, G.: ‘Singular perturbation approximation of large, dense linear systems’. IEEE Int. Symp. on Computer-Aided Control System Design, Anchorage, AK, USA, 2000, pp. 255260.
    49. 49)
      • 40. Schönberger, J.: ‘An overview of simulation tools’, in Vasca, F., Iannelli, L. (Eds.): ‘Dynamics and control of switched electronic systems: advanced perspectives for modeling, simulation and control of power converters’ (Springer, London, 2012), pp. 391416.
    50. 50)
      • 15. Femia, N., Spagnuolo, G., Tucci, V.: ‘State-space models and order reduction for dc-dc switching converters in discontinuous modes’, IEEE Trans. Power Electron., 1995, 10, (6), pp. 640650.
    51. 51)
      • 13. Zulfiqar, U., Imran, M., Ghafoor, A., et al: ‘A new frequency-limited interval Gramians-based model order reduction technique’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (6), pp. 680684.
    52. 52)
      • 3. Shampine, L.F., Reichelt, M.W.: ‘The MATLAB ODE suite’, SIAM J. Sci. Comput., 1997, 18, (1), pp. 122.
    53. 53)
      • 11. Burke, D., Smy, T.: ‘Thermal models for optical circuit simulation using a finite cloud method and model reduction techniques’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2013, 32, (8), pp. 11771186.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0320
Loading

Related content

content/journals/10.1049/iet-cds.2019.0320
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading