Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Solution to alleviate the impact of line resistance on the crossbar array

The crossbar array implementing the weighted sum computation and weight update operation is a promising hardware accelerator for neuromorphic computing. However, the voltage drop caused by the current flowing through the access lines could be aggressive for the resistive crossbar array in a fully parallel fashion. In this study, the authors analysed the impact of the line resistance on the crossbar array based on the SPICE simulation. It implies that the scale of the crossbar array and the ratio of line resistance to resistive random access memory resistance bring great influence on the performance of the crossbar array. Also an scheme of optimisation has been proposed to diminish its influence. Furthermore, considering line resistance, multi-layer perceptron based on crossbar array has been simulated with SPICE on Modified National Institute of Standards and Technology dataset. Those results could provide design guidelines for the practical hardware implementation of the neuromorphic accelerator.

References

    1. 1)
      • 34. Linn, E., Rosezin, R., Kügeler, C., et al: ‘Complementary resistive switches for passive nanocrossbar memories’, Nature Mater., 2010, 9, (5), pp. 403406.
    2. 2)
      • 20. Yan, B., Mahmoud, A.M., Yang, J.J., et al: ‘A neuromorphic ASIC design using one-selector-one-memristor crossbar’. 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS), Montreal, QC, 2016, pp. 13901393s.
    3. 3)
      • 12. Wu, H., Yao, P., Gao, B., et al: ‘Device and circuit optimization of RRAM for neuromorphic computing’. 2017 IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 11.5.111.5.4.
    4. 4)
      • 2. Xie, G., Liu, G., Zhang, S.: ‘Expression of emotion using a system combined artificial neural network and memristor-based crossbar array’. IEEE 2016 35th Chinese Control Conf., Chengdu, China, 2016.
    5. 5)
      • 9. Lee, B.C., Zhou, P., Yang, J., et al: ‘Phase-change technology and the future of main memory’, IEEE Micro, 2010, 30, (1), pp. 143143.
    6. 6)
      • 11. Bricalli, A., Ambrosi, E., Laudato, M., et al: ‘Resistive switching device technology based on silicon oxide for improved on–off ratio – part I: memory devices’, IEEE Trans. Electron Devices, 2019, 65, (1), pp. 115121.
    7. 7)
      • 14. Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., et al: ‘Training and operation of an integrated neuromorphic network based on metal-oxide memristors’, Nature, 2015, 521, pp. 6164.
    8. 8)
      • 1. Deng, Y., Huang, P., Chen, B., et al: ‘RRAM crossbar array with cell selection device: a device and circuit interaction study’, IEEE Trans. Electron Devices, 2013, 60, (2), pp. 719726.
    9. 9)
      • 8. Burr, G.W., Breitwisch, M.J., Franceschini, M., et al: ‘Phase change memory technology’, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct., 2010, 28, (2), pp. 223262.
    10. 10)
      • 10. Akinaga, H., Shima, H.: ‘Resistive random access memory (ReRAM) based on metal oxides’, Proc. IEEE, 2010, 98, (12), pp. 22372251.
    11. 11)
      • 23. LeCun, Y., Cortes, C., Burges, C.J.C.: ‘MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges’. Retrieved 17 August 2013.
    12. 12)
      • 17. Chen, A.: ‘A comprehensive crossbar array model with solutions for line resistance and nonlinear device characteristics’, IEEE Trans. Electron Devices, 2013, 60, (4), pp. 13181326.
    13. 13)
      • 30. Li, C., Hu, M., Li, Y., et al: ‘Analogue signal and image processing with large memristor crossbars’, Nature Electron., 2018, 1, (1), pp. 5259.
    14. 14)
      • 6. Zidan, M.A., Omran, H., Sultan, A., et al: ‘Compensated readout for high-density MOS-gated memristor crossbar array’, IEEE Trans. Nanotechnol., 2015, 14, (1), pp. 36.
    15. 15)
      • 31. Wang, Z., Joshi, S., Savel'ev, S., et al: ‘Fully memristive neural networks for pattern classification with unsupervised learning’, Nature Electron., 2018, 1, (2), pp. 137145.
    16. 16)
      • 32. Jeong, Y., Zidan, M.A., Lu, W.D.: ‘Parasitic effect analysis in memristor-array-based neuromorphic systems’, IEEE Trans. Nanotechnol., 2018, 17, (1), pp. 184193.
    17. 17)
      • 21. Liu, B., Li, H., Chen, Y., et al: ‘Reduction and IR-drop compensations techniques for reliable neuromorphic computing systems’. 2014 IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), San Jose, CA, 2014, pp. 6370.
    18. 18)
      • 7. Wong, H.S.P., Raoux, S., Kim, S., et al: ‘Phase change memory’, Proc. IEEE, 2010, 98, (12), pp. 22012227.
    19. 19)
      • 13. Kang, J., Yu, Z., Wu, L., et al: ‘Time-dependent variability in RRAM-based analog neuromorphic system for pattern recognition’. 2017 IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, 2017, pp. 6.4.16.4.4.
    20. 20)
      • 19. Kim, S., Zhou, J., Lu, W.D.: ‘Crossbar RRAM arrays: selector device requirements during write operation’, IEEE Trans. Electron Devices, 2014, 61, (8), pp. 28202826.
    21. 21)
      • 25. Oldham, K.T.S.: ‘The doctrine of description: Gustav Kirchhoff, classical physics, and the ‘purpose of all science’ in 19th-century Germany’ (University of California, Berkeley, 2008).
    22. 22)
      • 4. Kim, K.H., Gaba, S., Wheeler, D., et al: ‘A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications’, Nano Lett., 2012, 12, (1), pp. 389395.
    23. 23)
      • 22. Wang, Y., Wen, W., Liu, B., et al: ‘Group scissor: scaling neuromorphic computing design to large neural networks’. 2017 54th ACM/EDAC/IEEE Design Automation Conf. (DAC), Austin, TX, 2017, pp. 16.
    24. 24)
      • 3. Querlioz, D., Bichler, O., Dollfus, P., et al: ‘Immunity to device variations in a spiking neural network with memristive nanodevices’, IEEE Trans. Nanotechnol., 2013, 12, (3), pp. 288295.
    25. 25)
      • 26. Zidan, M.A., Strachan, J.P., Lu, W.D.: ‘The future of electronics based on memristive systems’, Nature Electron., 2018, 1, (1), pp. 2229.
    26. 26)
      • 27. Li, Z., Chen, P.Y., Xu, H., et al: ‘Design of ternary neural network with 3-D vertical RRAM array’, IEEE Trans. Electron Devices, 2017, 64, (6), pp. 27212727.
    27. 27)
      • 28. Gao, L., Wang, I., Chen, P., et al: ‘Fully parallel write/read in resistive synaptic array for accelerating on-chip learning’, Nanotechnology, 2015, 26, (45), p. 455204.
    28. 28)
      • 33. Fouda, M.E., Lee, S., Lee, J., et al: ‘Mask technique for fast and efficient training of binary resistive crossbar arrays’, IEEE Trans. Nanotechnol., 2019, 18, pp. 704716.
    29. 29)
      • 24. Millikan, R.A., Bishop, E.S.: ‘Elements of electricity: a practical discussion of the fundamental laws and phenomena of electricity and their practical applications in the business and industrial world’ (ProQuest Dissertations Publishing, University of California, Berkeley, 1917).
    30. 30)
      • 18. Chen, A.: ‘Analysis of partial bias schemes for the writing of crossbar memory arrays’, IEEE Trans. Electron Devices, 2015, 62, (9), pp. 28452849.
    31. 31)
      • 15. Yu, S., Wong, H.S.P.: ‘Compact modeling of conducting-bridge random-access memory (CBRAM)’, IEEE Trans. Electron Devices, 2011, 58, (5), pp. 13521360.
    32. 32)
      • 29. Jo, S.H., Chang, T., Ebong, I., et al: ‘Nanoscale memristor device as synapse in neuromorphic systems’, Nano Lett., 2010, 10, (4), pp. 12971301.
    33. 33)
      • 16. Kim, G.H., Kim, K.M., Seok, J.Y., et al: ‘Influence of the interconnection line resistance and performance of a resistive cross bar array memory’, J. Electrochem. Soc., 2010, 157, (10), pp. 194194.
    34. 34)
      • 5. Hu, M., Graves, C.E., Li, C., et al: ‘Memristor-based analog computation and neural network classification with a dot product engine’, Adv. Mater., 2018, 30, (9), p. 1705914.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0313
Loading

Related content

content/journals/10.1049/iet-cds.2019.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address