Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and Analysis of Power-Efficient Quasi-Adiabatic Ternary Content Addressable Memory (QATCAM)

Ternary content addressable memory (TCAM) is a high-speed memory employed in network search engines which consume significant power. Many authors have provided efficient power solutions by proposing different match line schemes. This study proposes the use of energy recovering adiabatic logic scheme in the design of power-efficient TCAM. Two different innovative quasi-adiabatic TCAM (QATCAM) core cells are designed. The design is implemented in 180 nm complementary metal-oxide semiconductor technology with a power clock of 1.8 V on Cadence Virtuoso. It is found that the power dissipated by the proposed QATCAM cells is lower than its conventional counterparts. Adiabatic TCAM arrays are designed using adiabatic peripheral circuits. The proposed adiabatic TCAM core cells yield more considerable power savings even at higher frequencies up to 1 GHz.

References

    1. 1)
      • 34. Kesselman, A., Kogan, K., Nemzer, S., et al: ‘Space and speed trade-offs in TCAM hierarchical packet classification’, J. Comput. Syst. Sci., 2013, 79, (1), pp. 111121.
    2. 2)
      • 36. Sardinha, L.H.B., Silva, D.S., Vieira, M.A.M., et al: ‘TCAM/CAM-QCA: (ternary) content addressable memory using quantum-dot cellular automata’, Microelectron. J., 2015, 46, (7), pp. 563571.
    3. 3)
      • 20. Vijayasarathi, D.S., Nourani, M., Akhbarizadeh, M.J., et al: ‘Ripple-precharge TCAM: a low power solution for network search engines’. Proc. 2005 Int. Conf. on Computer Design (ICCD'05), San Jose, CA, USA, November 2005, pp. 243248.
    4. 4)
      • 27. Ullah, Z., Jaiswal, M.K., Cheung, R.C.C.: ‘E-TCAM: an efficient SRAM-based architecture for TCAM’, Circuits Syst. Signal Process., 2014, 33, (10), pp. 31233144.
    5. 5)
      • 24. Maurya, S.K., Clark, L.T.: ‘A dynamic longest prefix matching content addressable memory for IP routing’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (6), pp. 963972.
    6. 6)
    7. 7)
      • 31. Sandhya, M., Vinoth Kumar, M.: ‘Recent development in efficient adiabatic logic circuits and power analysis with CMOS logic’, Procedia Comput. Sci., 2015, 57, pp. 12991307.
    8. 8)
      • 37. Heikalabad, S.R., Navin, A.H., Zadeh, M.H.: ‘Content addressable memory cell in quantum-dot cellular automata’, Microelectron. Eng., 2016, 163, (1), pp. 140150.
    9. 9)
      • 22. Guo, R., Delgado-Frias, J.G.: ‘IP routing table compaction and sampling schemes to enhance TCAM cache performance’, J. Syst. Archit., 2009, 55, (1), pp. 6169.
    10. 10)
    11. 11)
      • 35. Khasanvis, S., Csaba, M.R., Moritz, A.: ‘Heterogeneous graphene–CMOS ternary content addressable memory’, J. Parallel Distrib. Comput., 2014, 74, (6), pp. 24972503.
    12. 12)
      • 13. Jothi, D., Sivakumar, R.: ‘Design and analysis of power efficient binary content addressable memory (PEBCAM) core cells’, Circuits Syst. Signal Process., 2017, 37, pp. 14221451.
    13. 13)
      • 30. Shinghal, D., Saxena, A., Noor, A.: ‘Adiabatic logic circuits: a retrospect’, MIT Int. J. Electron. Commun. Eng., 2013, 3, (2), pp. 108114.
    14. 14)
      • 12. Jothi, D., Sivakumar, R.: ‘A completely efficient charge recovery adiabatic logic content addressable memory’. Int. Conf. on Computers, Communications, and Systems (ICCCS 2015), Kanyakumari,Tamilnadu, India, November 2015.
    15. 15)
      • 25. Ullah, Z., Ilgon, K., Baeg, S.: ‘Hybrid partitioned SRAM-based ternary content addressable memory’, IEEE Trans. Circuits Syst. I, 2012, 59, (12), pp. 29692979.
    16. 16)
      • 3. Available at https://www.techopedia.com/definition/31631/ternary-content-addressable-memory-tcam, accessed April 2019.
    17. 17)
      • 11. Jothi, D., Saranya, L.: ‘Power efficient CAM using adiabatic logic’. Second IEEE Int. Conf. on Innovations in Information, Embedded and Communication Systems, Coimbatore, Tamilnadu, India, March 2015.
    18. 18)
      • 38. Yang, R., Li, H., Smithe, K.K.H., et al: ‘Ternary content-addressable memory with MoS2 transistors for massively parallel data search’, Nature Electron., 2019, 2, pp. 108114.
    19. 19)
    20. 20)
      • 29. Available at http://emicroelectronics.free.fr/onlineCourses/VLSI/ch07.html, accessed April 2019.
    21. 21)
      • 1. Lattice Semiconductor Corporation, Application Note AN8071 on ‘Content Addressable Memory (CAM) Applications for ispXPLD Devices’, July 2002.
    22. 22)
      • 15. Mahendra, T.V., Mishra, S., Dandapat, A.: ‘Self-controlled high-performance precharge-free content-addressable memory’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2017, 25, (8), pp. 23882392.
    23. 23)
      • 19. Ravikumar, V.C., Mahapatra, R.N.: ‘TCAM architecture for IP lookup using prefix properties’, IEEE Comput. Soc., 2004, 24, (2), pp. 6069.
    24. 24)
      • 6. Mohan, N.: ‘Low-power high-performance ternary content addressable memory circuits’. PhD thesis, University of Waterloo, Electrical and Computer Engineering, Waterloo, Ontario, Canada, 2006.
    25. 25)
    26. 26)
      • 40. Kanungo, J., Dasgupta, S.: ‘Performance analysis of a complete adiabatic logic system driven by the proposed power clock generator’, J. Semiconduct., 2014, 35, (9), pp. 09500110950017.
    27. 27)
      • 21. Kocak, T., Basci, F.: ‘A power-efficient TCAM architecture for network forwarding tables’, J. Syst. Archit., 2006, 52, (5), pp. 307314.
    28. 28)
      • 2. Pagiamtzis, K., Sheikholeslami, A.: ‘Content-addressable memory (CAM) circuits and architectures: a tutorial and survey’, IEEE J. Solid-State Circuits, 2006, 41, pp. 712727.
    29. 29)
      • 14. Huang, C.-Y.: ‘Ternary content addressable memory circuits’. Midterm Report – IEE5009: Memory System, Institute of Electronics, National Chiao-Tung University, Fall 2012.
    30. 30)
    31. 31)
      • 39. Kanungo, J., Dasgupta, S.: ‘Scaling trends in energy recovery logic: an analytical approach’, J. Semiconduct., 2013, 34, (8), pp. 08500110850015.
    32. 32)
      • 28. Dokić, B.L.: ‘A review of energy efficient CMOS digital logic’,  Eng. Technol. Appl. Sci. Res., 2013, 3, (6), pp. 552561.
    33. 33)
      • 4. Available at https://etherealmind.com/basics-what-is-ternary-content-address-memory-tcam, accessed May 2019.
    34. 34)
      • 5. Arsovski, I., Chandler, T., Sheikholeslami, A.: ‘A ternary content-addressable memory (TCAM) based on 4 T static storage and including a current-race sensing scheme’, IEEE J. Solid-State Circuits, 2003, 38, (1), pp. 155158.
    35. 35)
    36. 36)
      • 18. Huang, P.-T., Lai, S.-L., Chuang, C.-T., et al: ‘0.339 fJ/bit/search energy-efficient TCAM macro design in 40 nm LP CMOS’. IEEE Asian Solid-State Circuits Conf., Kaohsiung, Taiwan, 10–12 November 2014.
    37. 37)
      • 23. Bhattacharya, S., Gopinath, K.: ‘Virtually cool ternary content addressable memory’. Proc. 13th USENIX Conf. on Hot Topics in Operating Systems, USENIX Association, Berkeley, CA, USA, Napa, California, 9–11 May 2011.
    38. 38)
      • 7. Yang, S.-H., Huang, Y.-J., Li, J.-F.: ‘A low-power ternary content addressable memory with Pai-Sigma matchlines’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2012, 20, (10), pp. 19091913.
    39. 39)
      • 26. Mishra, T.B., Sahni, S.: ‘PETCAM – a power efficient TCAM architecture for forwarding tables’, IEEE Trans. Comput., 2012, 61, (1), pp. 317.
    40. 40)
      • 32. Moon, Y., Jeong, D.K.: ‘An efficient charge recovery logic circuit’, IEEE J. Solid-State Circuits, 1996, 31, pp. 514522.
    41. 41)
      • 17. Manna, A., Kanchana Bhaaskaran, V.S.: ‘Adiabatic SRAM cell and array’, in ‘Integrated intelligent computing, communication and security studies in computational intelligence’, vol. 771 (Springer, Singapore, 2019), pp. 363371.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0223
Loading

Related content

content/journals/10.1049/iet-cds.2019.0223
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address