Your browser does not support JavaScript!

Systematic circuit design and analysis using generalised g m/I D functions of MOS devices

Systematic circuit design and analysis using generalised g m/I D functions of MOS devices

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The conventional approach to implementing analogue integrated circuits in nano-scale complementary metal oxide semiconductor (CMOS) technologies relies basically on circuit simulations using the SPICE models provided by the foundries. Depending on the circuit complexity, the designer should, however, spend a significant amount of time sizing the metal oxide semiconductor field effect transistors such that maximum efficiency is achieved for minimum power consumption and silicon area. Analytical-based design procedures can assist the designer in confronting the sizing challenge of the metal oxide semiconductor (MOS) devices. The procedures are, however, dependent on circuit topology, model parameters, and device physics. This study aims at presenting a systematic approach for analysis and design of analogue circuits in scaled CMOS. For this purpose, the behaviour of short-channel MOS devices is characterised in various process and temperature corners using an updated matrix representation of different device scales, bias conditions, and small-signal parameters. The details to effectively extract the matrix derivation of the technology model files are presented, enabling to devise generalised functions for the design and analysis of the circuits. The design examples include a 0.39 V – 28 µA reference circuit, and a 7.50 µA/V operational-transconductance amplifier with 1.0 V voltage supply in 90-nm CMOS.


    1. 1)
      • 23. Sabry, M.N., Omran, H., Dessouky, M.: ‘Systematic design and optimization of operational transconductance amplifier using gm/ID design methodology’, Microelectron. J., 2018, 75, pp. 8796.
    2. 2)
      • 7. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    3. 3)
      • 13. Rocha, F.A.E., Martins, R.M.F., Lourenço, N.C.C., et al: ‘Electronic design automation of analog ICs combining gradient models with multi-objective evolutionary algorithms’ (Springer Briefs in Applied Sciences and Technology, Springer, Berlin, 2014).
    4. 4)
      • 10. Shokouhifar, M., Jalali, A.: ‘Simplified symbolic transfer function factorization using combined artificial bee colony and simulated annealing’, Appl. Soft Comput., 2017, 55, pp. 436451.
    5. 5)
      • 41. Kerns, D.V.: ‘Enhanced peaking current reference’, IEEE J. Solid-State Circuits, 1988, 23, (3), pp. 869872.
    6. 6)
      • 22. Piccinni, G., Avitabile, G., Talarico, C., et al: ‘UWB distributed amplifier design using lookup tables and gm over ID methodology’, Analog Integr. Circuits Signal Process., 2017, 90, (3), pp. 615624.
    7. 7)
      • 33. Aminzadeh, H., Danaie, M., Lotfi, R.: ‘Design of two-stage Miller-compensated amplifiers based on an optimized settling model’. Proc. 20th Int. Conf. on VLSI Design held jointly with 6th Int. Conf. on Embedded Systems, Bangalore, India, 2007, pp. 171176.
    8. 8)
      • 21. Jespers, P., Murmann, B.: ‘Systematic design of analog CMOS circuits using pre-computed lookup tables’ (Cambridge University Press, Cambridge CB2 8BS, UK, 2017).
    9. 9)
      • 29. Bastan, Y., Hamzehil, E., Amiri, P.: ‘Output impedance improvement of a low voltage low power current mirror based on body driven technique’, Microelectron. J., 2016, 56, pp. 163170.
    10. 10)
      • 42. Aminzadeh, H., Lotfi, R., Mafinezhad, K.: ‘Low-dropout voltage reference: an approach to low-temperature-sensitivity architectures with high drive capability’, Electron. Lett., 2009, 45, (24), pp. 12001201.
    11. 11)
      • 35. Grasso, A.D., Marano, D., Palumbo, G., et al: ‘High-performance three-stage single-Miller CMOS OTA with no upper limit of CL’, IEEE Trans. Circuits Syst. II: Express Briefs, 2018, 65, (11), pp. 15291533.
    12. 12)
      • 25. Synopsys’, 2018. Availbale at:
    13. 13)
      • 14. Biabanifard, S., Hosseini, S.M., Biabanifard, M., et al: ‘Multi stage OTA design: from matrix description to circuit realization’, Microelectron. J., 2018, 77, pp. 4965.
    14. 14)
      • 5. Vellasco, M., Zebulum, R., Pacheco, M.: ‘Evolutionary electronics: automatic design of electronic circuits and systems by genetic algorithms’ (CRC Press, Boca Raton, FL, 2001).
    15. 15)
      • 36. Grasso, A.D., Palumbo, G., Pennisi, S., et al: ‘The noise performance of Miller CMOS operational amplifiers with current-buffer frequency compensation’, Int. J. Circuit Theory Appl., 2017, 45, (4), pp. 457465.
    16. 16)
      • 17. Murmann, B.: ‘Design and optimization of operational transconductance amplifiers in fine-line CMOS’. IEEE Custom Integrated Circuit Conf. (CICC) Educational Session, San Jose, USA, 2008.
    17. 17)
      • 34. Aminzadeh, H.: ‘Three-stage nested-Miller-compensated operational amplifiers: analysis, design, and optimization based on settling time’, Int. J. Circuit Theory Appl., 2010, 39, (6), pp. 573587.
    18. 18)
      • 2. Binkley, D.M., Hopper, C.E., Tucker, S.D., et al: ‘A CAD methodology for optimizing transistor current and sizing in analog CMOS design’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2003, 22, (2), pp. 225237.
    19. 19)
      • 39. Gray, P.R., Hurst, P.J., Lewis, S.H., et al: ‘Analysis and design of analog integrated circuits’ (John Wiley & Sons, New York, 2001, 4th edn.).
    20. 20)
      • 1. Razavi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill, New York, 2017, 2nd edn.).
    21. 21)
      • 3. Rutenbar, R., Gielen, G., Antao, B.: ‘ISAAC: a symbolic simulator for analog integrated circuits’, in ‘Computer-aided design of analog integrated circuits and systems’ (IEEE Press, NJ, 2002), pp. 276286.
    22. 22)
      • 12. Atashpaz-Gargari, E., Lucas, C.: ‘Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition’. Proc. IEEE Congress on Evolutionary Computation, Singapore, Singapore, 2007, pp. 46614667.
    23. 23)
      • 18. Jespers, P.: ‘The gm/IDmethodology: a sizing tool for low-voltage analog CMOS circuits: the semi-empirical and compact model approaches’ (Springer Science & Business Media, New York, 2010).
    24. 24)
      • 30. Aminzadeh, H., Dashti, M.A.: ‘Dual loop cascode-Miller compensation with damping factor control unit for three-stage amplifiers driving ultra large load capacitors’, Int. J. Circuit Theory Appl., 2019, 47, (1), pp. 118.
    25. 25)
      • 37. Cheng, M. H., Wu, Z.W.: ‘Low-power low-voltage reference using peaking current mirror circuit’, IET Electron. Lett., 2005, 41, (10), pp. 572573.
    26. 26)
      • 40. Kerns, D.V.: ‘Optimization of the peaking current source’, IEEE J. Solid-State Circuits, 1986, 21, (4), pp. 587590.
    27. 27)
      • 26. Mentor graphics’, 2018. Availbale at:
    28. 28)
      • 31. Aminzadeh, H., Dashti, M.A.: ‘Hybrid cascode compensation with current amplifiers for nano-scale three-stage amplifiers driving heavy capacitive loads’, Analog Integr. Circuits Signal Process., 2015, 83, pp. 331341.
    29. 29)
      • 20. Pollissard-Quatremère, G., Gosset, G., Flandre, D.: ‘A modified gm/ID design methodology for deeply scaled CMOS technologies’, Analog Integr. Circuits Signal Process., 2014, 78, (3), pp. 771784.
    30. 30)
      • 19. Konishi, T., Inazu, K., Lee, J.G., et al: ‘Design optimization of high-speed and low-power operational transconductance amplifier using gm/ID lookup table methodology’, IEICE Trans. Electron., 2011, E94-C, (3), pp. 334345.
    31. 31)
      • 32. Aminzadeh, H., Banihashemi, M.: ‘Miller compensation: optimal design for operational amplifiers with a required settling time’, Circuits Syst. Signal Process., 2014, 33, (9), pp. 26752694.
    32. 32)
      • 15. Enz, C., Vittoz, E.: ‘Charge-based MOS transistor modeling: the EKV model for low-power RF IC design’ (Wiley, Chichester, 2006).
    33. 33)
      • 27. MATLAB r2018b’, The Mathworks, Inc., Natick MA, USA. Availbale at:
    34. 34)
      • 38. Aminzadeh, H., Nabavi, M.R., Serdijn, W.: ‘Low-dropout voltage source: an alternative approach for low-dropout voltage regulators’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (6), pp. 413417.
    35. 35)
      • 16. Silveira, F., Flandre, D., Jespers, P.G.A.: ‘A gm/ID based methodology for the design of CMOS analog circuits and its applications to the synthesis of a silicon-on-insulator micropower OTA’, IEEE J. Solid-State Circuits, 1996, 31, (9), pp. 13141319.
    36. 36)
      • 11. Mandal, P., Visvanathan, V.: ‘CMOS op–amp sizing using a geometric programming formulation’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2001, 20, (1), pp. 2238.
    37. 37)
      • 6. Koza, J.R., Bennett, F., Andre, D., et al: ‘Automated synthesis of analog electrical circuits by means of genetic programming’, IEEE Trans. Evol. Comput., 1997, 1, (2), pp. 109128.
    38. 38)
      • 4. Luchetta, A., Manetti, S., Reatti, A.: ‘SAPWIN-a symbolic simulator as a support in electrical engineering education’, IEEE Trans. Educ., 2001, 44, (2), pp. 213222.
    39. 39)
      • 8. Tlelo-Cuautle, E., Sanabria-Borbon, A.C.: ‘Optimizing operational amplifiers by evolutionary algorithms and gm/ID method’, Int. J. Electron., 2016, 103, (10), pp. 16651684.
    40. 40)
      • 9. Gielen, G.G.E., Walscharts, H.C.C., Sansen, W.M.C.: ‘Analog circuit design optimization based on symbolic simulation and simulated annealing’, IEEE J. Solid-State Circuits, 1990, 25, pp. 707713.
    41. 41)
      • 28. Kotti, M., Fakhfakh, M., Fino, M.H.: ‘On the dynamic rounding-off in analogue and RF optimal circuit sizing’, Int. J. Electron., 2014, 101, (4), pp. 452468.
    42. 42)
      • 24. Cadence’, 2018. Availbale at:

Related content

This is a required field
Please enter a valid email address