Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance of ultra-wide band DCBLNA with suspended strip line radiator for human breast cancer diagnosis medical imaging application

This study presents the performance of differential cascode balun low noise amplifier (DCBLNA) with ultra-wideband (UWB) for human breast cancer diagnosis. The proposed DCBLNA design-I with bulky spiral inductors achieves insufficient bandwidth with large power consumption of 10.8 mW. To attain the proper UWB band of operation, suspended strip line (SSLIN) radiators have employed in the proposed design-I. The performance of SSLIN is evaluated in terms of line capacitance and characteristic impedance by optimising its width. It is observed that best 50 Ωn-II. DCBLNA design-II using SSLIN have achieving a desired band of operation ranging from 1.5 to 15.7 GHz and best NF of 0.5 dB. The gain and phase imperfections are simulated to characterise balun networks. The smallest gain imperfection achieved is 0.1 dB at 10 GHz while the simulated phase imperfection turns out to be sufficiently good with 2.35° at 8 GHz. The proposed DCBLNA design-II is implemented and fabricated using RFCMOS 45 nm Taiwan Semiconductor Manufacturing Company (TSMC) process under commercial conditions. The highest figure of merit comes out to be 3.2 that ensures good accuracy of medical imaging for breast cancer diagnosis.

References

    1. 1)
      • 3. Fear, E., Meaney, P., Stuchly, M.: ‘Microwaves for breast cancer detection’, IEEE Potentials, 2003, 1, (22), pp. 1218.
    2. 2)
      • 4. Fear, E., Hagness, S., Li, X., et al: ‘Confocal microwave imaging for breast cancer detection localization of tumors in three dimensions’, IEEE Trans. Biomed. Eng., 2002, 8, (49), pp. 812822.
    3. 3)
      • 15. Lo, C.M., Lin, C.S., Wang, H.: ‘A miniature V band 3-stage cascode LNA in 0.13µmCMOS’, IEEE Int. Solid-State Circuits Conf. Tech. Dig., 2006, pp. 402403.
    4. 4)
      • 8. Lim, H.B., Nhung, N.T.T., Li, E.P., et al: ‘Confocal microwave imaging for breast cancer detection: delay-multiply-and-sum image reconstruction algorithm’, IEEE Trans. Biomed., 2008, 6, (55), pp. 16971704.
    5. 5)
      • 23. Lehtovuori, A., Costa, L.: ‘Model for Shielded Suspended Substrate Microstrip Line’, Circuit Theory Laboratory Report Series, 1998, ISBN 951-22-4202-8, ISSN 1455–9757.
    6. 6)
      • 20. Shekhar, S., Walling, J.S., Allstot, D.-J.: ‘Bandwidth extension techniques for CMOS amplifiers’, IEEE J. Solid-State Circuits, 2006, 41, (11), pp. 24242439.
    7. 7)
      • 13. Reddy, K.V., Sravani, K., Kumar, P. H.: ‘A 280 μW sub-threshold balun LNA for medical radio using current re-use technique’. Proc. PhD Research in Microelectronics and Electronics Latin America (PRIME-LA), Bariloche, Argentina, 2017, pp. 14.
    8. 8)
      • 9. Davis, S., Van Veen, B., Hagness, S., et al: ‘Breast tumor characterization based on ultra-wide band microwave back scatter’, IEEE Trans. Biomed., 2008, 1, (55), pp. 237246.
    9. 9)
      • 21. Aravinth Kumar, A.R., Sahoo, B.D., Dutta, A.: ‘Wideband 2–5 GHz noise cancelling subthreshold low noise amplifier’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (7), pp. 834838.
    10. 10)
      • 25. Abdelkader, T., Mohamed, T., Abdelhalim, S., et al: ‘Efficient UWB low noise amplifier with high out of band interference cancellation’, IET Microw. Antennas Propag., 2017, 11, (1), pp. 98105.
    11. 11)
      • 11. Nikolova, N.: ‘Microwave imaging for breast cancer’, IEEE Microw. Mag., 2011, 7, (12), pp. 7894.
    12. 12)
      • 14. Nguyen, T.K., Kim, C.H., Ihm, G.J., et al: ‘CMOS low-noise amplifier design optimization techniques’, IEEE Trans. Microw. Theory Tech., 2004, 52, (5), pp. 14331442.
    13. 13)
      • 12. ZareFatina, G., ZareFatin, H.: ‘A wideband balun–LNA’, Int. J. Electron. Commun., 2014, 68, (7), pp. 653657.
    14. 14)
      • 7. Winters, D., Shea, J., Kosmas, P., et al: ‘Three-dimensional microwave breast imaging: dispersive dielectric properties estimation using patient-specific basis functions’, IEEE Trans. Med. Image, 2009, 7, (28), pp. 969981.
    15. 15)
      • 6. Irishina, N., Moscoso, M., Dorn, O.: ‘Microwave imaging for early breast cancer detection using a shape-based strategy’, IEEE Trans. Biomed. Eng., 2009, 4, (56), pp. 11431153.
    16. 16)
      • 19. Mohan, S.-S., Hershenson, M.D.-M., Boyd, S.-P., et al: ‘Bandwidth extension in CMOS with optimized on-chip inductors’, IEEE J. Solid-State Circuits, 2000, 35, (3), pp. 346355.
    17. 17)
      • 2. Huynh, P.T., Jarolimek, A.M., Daye, S.: ‘The false-negative mammogram’, Radiograph, 1998, 18, (5), pp. 11371154.
    18. 18)
      • 10. Bassi, M., Bevilacqua, A., Gerosa, A., et al: ‘Integrated SFCW transceivers for UWB breast cancer imaging: architectures and circuit constraints’, IEEE Trans., 2012, 6, (59), pp. 12281241.
    19. 19)
      • 26. Lee, M., et al: ‘3–10 GHz noise-cancelling CMOS LNA using gm boosting technique’, IET Circuits Devices Syst., 2018, 12, (1), pp. 1216.
    20. 20)
      • 24. Ahmed, A., Hegazi, E., Ragai, H.: ‘A low-power wide-band CMOS LNA for WiMAX’, IEEE Trans. Circuits Syst. II, Express Briefs, 2007, 54, (1), pp. 48.
    21. 21)
      • 1. Brown, Q., Bydlon Torre, M., Richards Lisa, M., et al: ‘Optical assessment of tumorresection margins in the breast’, IEEE J. Sel. Top. Quantum Electron., 2010, 16, (3), pp. 530544.
    22. 22)
      • 22. Roy, G.M., Kumar, S., Kanuajia, B.K., et al: ‘Bandwidth enlargement of CMOS TIA using on-chip T-network for patient diagnosis in biomedical application’, Microelectron. J., 2017, 65, (67), pp. 8287.
    23. 23)
      • 18. Taibi, A., Trabelsi, M., Slimane, A., et al: ‘Efficient UWB low noise amplifier with high out of band interferencecancellation’, IET Microw. Antennas Propag., 2017, 1, (11), pp. 98105.
    24. 24)
      • 17. Huang, C.Y., Liu, J.Y.C.: ‘62–92 GHz low-noise transformer-coupled LNA in 90-nm CMOS’, Electron. Lett., 2018, 10, (54), pp. 634636.
    25. 25)
      • 5. Bond, E., Li, X., Hagness, S., et al: ‘Microwave imaging via space-time beam forming for early detection of breast cancer’, IEEE Trans. Antennas Propag., 2003, 8, (51), pp. 16901705.
    26. 26)
      • 16. Hu, J., Ma, K., Mou, S., et al: ‘A seven-octave broadband LNA MMIC using bandwidth extension techniques and improved active load’, IEEE Trans. Circuits Syst., 2018, 65, (10), pp. 31503161.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0207
Loading

Related content

content/journals/10.1049/iet-cds.2019.0207
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address