Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Integer-N charge pump phase locked loop for 2.4 GHz application with a novel design of phase frequency detector

In this article, a novel design is presented, for an Integer-N charge pump phase locked loop (PLL). The design is with a resetless phase frequency detector, and with the differential design of charge pump. The voltage-controlled oscillator is of current starved type. The proposed PLL is not having any blind zone and is having near-zero dead zone. When compared to the conventional design, the current mismatch in the charge pump is reduced by 3.21%, and the lock time of the PLL is reduced by 79%. The PLL is intended for 2.4 GHz application, and the obtained lock time is 1.7 μs. The implementation is done with the three-stage ring oscillator, with divider of modulus as 24, in 180 nm TSMC technology. At 1.8 V supply voltage, the circuit consumes 9.72 mW of power.

References

    1. 1)
      • 7. Chen, W.-H., Inerowicz, M.E., Jung, B.: ‘Phase frequency detector with minimal blind zone for fast frequency acquisition’, IEEE Trans. Circuits Syst. II, Express Briefs, 2010, 57, (12), pp. 936940.
    2. 2)
      • 15. Young, I.A., Greason, J.K., Wong, K.L.: ‘A PLL clock generator with 5 to 110 MHz of lock range for microprocessors’, IEEE J. Solid-State Circuits, 1992, 27, (11), pp. 15991607.
    3. 3)
      • 34. Koithyar, A., Ramesh, T.K.: ‘A faster phase frequency detector using transmission gate based latch for the reduced response time of the PLL’, Int. J. Circuit Theory Appl., 2018, 46, (4), pp. 842854.
    4. 4)
      • 28. Koithyar, A., Ramesh, T.K.: ‘Analysis of deadbeat control for an integer-N charge-pump PLL’, Procedia Comput. Sci., 2015, 70C, pp. 392398.
    5. 5)
      • 21. Kang, S.-M., Leblebici, Y.: ‘CMOS digital integrated circuits: analysis and design’ (McGraw-Hill Higher Education, New York, USA, 2002, 3rd edn.), pp. 239241.
    6. 6)
      • 16. Manikandan, R.R., Amrutur, B.: ‘A zero charge-pump mismatch current tracking loop for reference spur reduction in PLLs’, Microelectron. J., 2015, 46, pp. 422430.
    7. 7)
      • 31. Paydavosi, N., Morshed, T.H., Lu, D.D., et al: ‘BSIM4v4.8.0 MOSFET model – user's manual, department of electrical engineering and computer sciences’ (University of California, Berkeley, 2013).
    8. 8)
      • 22. Retdian, N., Takagi, S., Fujii, N.: ‘Voltage controlled ring oscillator with wide tuning range and fast voltage swing’. IEEE – Asia-Pacific Conf. on ASIC, Tokyo, Japan, 2002.
    9. 9)
      • 23. Jovanovic, G., Stojcev, M., Stamenkovic, Z.: ‘A CMOS voltage controlled ring oscillator with improved frequency stability, Scientific Publications of the State University of Novi Pazar, Ser. AAppl. Math. Inform. Mech., 2010, 2, pp. 19.
    10. 10)
      • 20. Eken, Y.A., Uyemura, J.P.: ‘A 5.9-GHz voltage-controlled ring oscillator in 0.18-µm CMOS’, IEEE J. Solid-State Circuits, 2004, 39, (1), pp. 230233.
    11. 11)
      • 29. Koithyar, A., Ramesh, T.K.: ‘Integer-N charge pump phase locked loop with reduced current mismatch’. Int. Conf. on Wireless Communications, Signal Processing and Networking (WiSPNET 2017), Chennai, India, March 2017, pp. 650653.
    12. 12)
      • 17. San-Um, W., Masayoshi, T.: ‘A low-jitter supply-regulated charge pump phase-locked loop with built-In test and calibration’. IEEE Int. Symp. on Circuits and Systems, Paris, France, 2010, pp. 19311934.
    13. 13)
      • 10. Chen, Y.-W., Yu, Y.-H., Chen, Y.-J.E.: ‘A 0.18 μm CMOS dual-band frequency synthesizer with spur reduction calibration’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (10), pp. 551553.
    14. 14)
      • 9. Colodro, F., Torralba, A.: ‘Frequency-to-digital conversion based on a sampled phase-locked loop’, Microelectron. J., 2013, 44, pp. 880887.
    15. 15)
      • 33. Koithyar, A., Ramesh, T.K.: ‘Frequency equation for the submicron CMOS ring oscillator using the first order characterization’, J. Semicond., 2018, 39, (5), pp. 055001-1055001-6.
    16. 16)
      • 14. Nanda, U., Acharya, D.P., Patra, S.K.: ‘A new transmission gate cascode current mirror charge pump for fast locking low noise PLL’, Circuits Syst. Signal Process., 2014, 33, pp. 27092718.
    17. 17)
      • 19. Chebli, R., Zhao, X., Sawan, M.: ‘A wide tuning range voltage-controlled ring oscillator dedicated to ultrasound transmitter’. IEEE – Int. Conf. on Microelectronics, Tunis, Tunisia, 2004, pp. 313316.
    18. 18)
      • 32. Koithyar, A., Ramesh, T.K.: ‘Characterization of submicron ring oscillator using the first order design equations’. Int. Conf. on Communication and Signal Processing, Melmaruvathur, India, April 2016, pp. 12271231.
    19. 19)
      • 26. Rout, P.K., Acharya, D.P.: ‘Design of CMOS ring oscillator using CMODE’. IEEE – Int. Conf. on Energy, Automation, and Signal, Bhubaneswar, India, 2011, pp. 16.
    20. 20)
      • 24. Jacob Baker, R.: ‘CMOS: circuit design, layout, and simulation’ (Wiley-IEEE Press, New Jersey, USA, 2010, 3rd edn.), pp. 337339.
    21. 21)
      • 3. Shu, K., Sinchez-Sinencio, E.: ‘CMOS PLL synthesizers: analysis and design’ (Springer, New York, USA, 2005), pp. 3156.
    22. 22)
      • 18. Fan, X., Tang, L., Wang, Y., et al: ‘A 1 V 0.18 lm fully integrated integer-N frequency synthesizer for 2.4 GHz wireless sensor network applications’, Analog Integr. Circuits Signal Process., 2015, 82, pp. 251264.
    23. 23)
      • 8. Ren, S., Emmert, J., Siferd, R.: ‘Design and performance of a robust 180 nm CMOS standalone VCO and the integrated PLL’, Analog Integr. Circuits Signal Process., 2011, 68, pp. 285298.
    24. 24)
      • 25. Rabaey, J.M., Chandrakasan, A., Nikolic, B.: ‘Digital integrated circuits – a design perspective’ (Pearson Education, London, England, 2003, 2nd edn.), pp. 194195.
    25. 25)
      • 13. Casha, O., Grech, I., Micallef, J., et al: ‘CMOS implementation of a 1.6 GHz low voltage low phase noise quadrature output frequency synthesizer with automatic amplitude control’, Analog Integr. Circuits Signal Process., 2008, 55, pp. 319.
    26. 26)
      • 37. Lei, F., White, M.H.: ‘A low noise, inductor-less, integer-N RF synthesizer using phase-locked loop with reference injection (PLL-RI)’. IEEE 60th Int. Midwest Symp. on Circuits and Systems, Boston, USA, 2017, pp. 357360.
    27. 27)
      • 4. Lee, T.: ‘The design of CMOS radio frequency integrated circuits’ (Cambridge University Press, Cambridge, UK, 2004, 2nd edn.), pp. 581588.
    28. 28)
      • 2. Gardner, F.M.: ‘Phaselock techniques’ (Wiley Interscience, New Jersey, USA, 2005, 3rd edn.).
    29. 29)
      • 12. Erfani-Jazi, H.R., Ghaderi, N.: ‘A divider-less, high speed and wide locking range phase locked loop’, Int. J. Electron. Commun., 2015, 69, pp. 722729.
    30. 30)
      • 30. Allen, P.E., Holberg, D.R.: ‘CMOS analog circuit design’ (Oxford University Press, Oxford, UK, 2007, 2nd edn.), pp. 269278.
    31. 31)
      • 36. Kong, L., Razavi, B.: ‘A 2.4 GHz 4 mW Integer-N inductorless RF synthesizer’, IEEE J. Solid-State Circuits, 2016, 51, (3), pp. 626635.
    32. 32)
      • 5. Weste, N., Harris, D.: ‘CMOS VLSI design’ (Pearson Education, London, England, 2010, 4th edn.), pp. 580587.
    33. 33)
      • 6. Razavi, B.: ‘RF microelectronics’ (Pearson Education, London, England, 2012, 2nd edn.), pp. 611638.
    34. 34)
      • 11. Magnani, A., Borgarino, M., Viallon, C., et al: ‘A low power Ku phase locked oscillator in low cost 130 nm CMOS technology’, Microelectron. J., 2014, 45, pp. 619626.
    35. 35)
      • 27. Mishra, A., Sharma, G.K., Boolchandani, D.: ‘Performance analysis of power optimal PLL design using five-stage CS-VCO in 180 nm’. IEEE – Int. Conf. on Signal Propagation and Computer Technology, Ajmer, India, 2014, pp. 764768.
    36. 36)
      • 1. Gardner, F.M.: ‘Charge pump phase-lock loops’, IEEE Trans. Commun., 1980, 28, pp. 18491858.
    37. 37)
      • 35. Purushothama Chary, P., et al: ‘0.8 V 450 μW 2.4 GHz PLL using back-gate QVCO for ZigBee/BLE standard in 0.18 μm CMOS’. IEEE Int. Conf. on Microelectronics, Computing and Communications, 2016, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0189
Loading

Related content

content/journals/10.1049/iet-cds.2019.0189
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address