access icon free Analytical modelling and parameters extraction of multilayered OLED

This research study investigates electrical performance of the multilayered organic light-emitting diode (OLED) with a focus on the role of charge injection, transport and emission layers. Device parameters; luminescence and current density are extracted using Silvaco ATLAS numerical device simulator and validated through the fabricated experimental results with a minor deviation of 3%. Furthermore, a mathematical model is applied to extract other device parameters such as electric field, charge carrier mobility, concentration and current density. Additionally, the multilayered device architecture is critically analysed through cut line methodology to better comprehend the internal device physics in terms of hole-electron mobility, concentration and their recombination. Subsequently, the performance parameters extracted using analytical model are compared with the results of internal analysis and a close match is observed. These results prove the Poole-Frenkel mobility-dependent behaviour in the OLEDs that varies following electric field. Analyses also highlight high electron and hole concentrations in the vicinity of the emission layer as a reason of high luminescence in the multilayered OLED, directly following the Langevin's theory of recombination in organic semiconductors. These analyses highlight the impact of different layers in the OLEDs and thus open up new horizons to further performance improvement in these devices.

Inspec keywords: electron mobility; light emitting diodes; organic semiconductors; electron-hole recombination; Poole-Frenkel effect; hole mobility; carrier density; electric fields; leakage currents; organic light emitting diodes; charge injection; luminescence; current density; numerical analysis; semiconductor device models; carrier mobility; multilayers

Other keywords: parameter extraction; hole–electron mobility; multilayered OLED; internal analysis; performance parameters; transport layers; Langevin theory; carrier current density; emission layer; Poole–Frenkel mobility-dependent behaviour; electric field; Silvaco ATLAS numerical device simulator; performance improvement; charge injection; analytical model; multilayered organic light-emitting diode; electrical performance; organic semiconductors; cut-line methodology; mathematical model; hole concentrations; device parameters; internal device physics; emission layers; charge carrier mobility; luminescence; carrier concentration; multilayered device architecture

Subjects: Light emitting diodes; Semiconductor device modelling, equivalent circuits, design and testing; Other numerical methods

References

    1. 1)
      • 4. Fayez, M., Morsi, K.M., Sabry, M.N.: ‘OTFTs compact models: analysis, comparison, and insights’, IET Circuits Devices Syst., 2017, 11, (5), pp. 409420.
    2. 2)
      • 1. Kumar, B., Kaushik, B.K., Negi, Y.S.: ‘Organic thin film transistors: structures, models, materials, fabrication, and applications: a review’, Poly. Rev., 2014, 54, (1), pp. 33111.
    3. 3)
      • 19. Patil, D.S., Gautam, D.K.: ‘Analysis of effect of temperature on ZnSe based blue laser diode characteristics at 507 nm wavelength’, Phys. B, 2004, 344, (1–4), pp. 140146.
    4. 4)
      • 9. Negi, S., Mittal, P., Kumar, B.: ‘Impact of different layers on performance of OLED’, Microsyst. Technol., 2018, 24, (12), pp. 49814989.
    5. 5)
      • 15. Yang, H., Zhao, Y., Hou, J., et al: ‘Organic light-emitting devices with double-block layer’, Microelectron. J., 2006, 37, (11), pp. 12711275.
    6. 6)
      • 16. Mittal, P., Negi, Y.S., Singh, R.K.: ‘An analytical approach for parameter extraction in linear and saturation regions of top and bottom contact organic transistors’, J. Comput. Electron., 2015, 14, (3), pp. 828843.
    7. 7)
      • 11. Kim, J.Y., Kim, D., Kim, D.H., et al: ‘Analysis of out-coupling mechanism in organic light-emitting diodes’, IEEE Photonics Technol. Lett., 2014, 26, (9), pp. 896899.
    8. 8)
      • 22. Buso, D., Bhosle, S., Liu, Y., et al: ‘OLED electrical equivalent device for driver topology design’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 14591468.
    9. 9)
      • 6. Chen, H., Chen, J., Qiu, C., et al: ‘Blue organic light-emitting diode based on 1, 2, 3, 4, 5-pentaphenyl-1-(8-phenyl-1, 7-octadiynyl) silole’, IEEE J. Sel. Top. Quantum Electron., 2004, 10, (1), pp. 1015.
    10. 10)
      • 12. Krujatz, F., Hild, O., Fehse, K., et al: ‘Exploiting the potential of OLED-based photo-organic sensors for biotechnological applications’, Chem. Sci. J., 2016, 7, p.134.
    11. 11)
      • 7. Chen, Y., Chen, J., Ma, D., et al: ‘High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer’, Appl. Phys. Lett., 2011, 98, (24), p. 114.
    12. 12)
      • 17. Sonawane, U.S., Samuel, E.P., Kasar, C.K., et al: ‘Nanosimulation of electron confinement in cerium doped zinc oxide nanowire structure for light emitting devices’, Optik, 2016, 127, (12), pp. 49374940.
    13. 13)
      • 8. Yun, C., Cho, H., Koh, T.W., et al: ‘Doping-free inverted top-emitting organic light-emitting diodes with high power efficiency and near-ideal emission characteristics’, IEEE Trans. Electron Devices, 2012, 59, (1), pp. 159166.
    14. 14)
      • 13. Haigh, P.A., Ghassemlooy, Z., Papakonstantinou, I., et al: ‘2.7 Mb/s with a 93 kHz white organic light emitting diode and real time ANN equalizer’, IEEE Photonics Technol. Lett., 2013, 25, (17), pp. 16871690.
    15. 15)
      • 3. Kumar, B., Kaushik, B.K., Negi, Y.S.: ‘Analysis of electrical parameters of organic thin film transistors based on thickness variation in semi-conducting and dielectric layers’, IET Circuits Devices Syst., 2014, 8, (2), pp. 131140.
    16. 16)
      • 2. Castro-Carranza, A., Estrada, M., Nolasco, J.C., et al: ‘Organic thin-film transistor bias-dependent capacitance compact model in accumulation regime’, IET Circuits Devices Syst., 2012, 6, (2), pp. 130135.
    17. 17)
      • 14. Patil, D.S., Gautam, D.K.: ‘Computer analysis and optimization of physical and material parameters of the blue laser diode’, Opt. Commun., 2002, 201, (4–6), pp. 413423.
    18. 18)
      • 23. Lin, R.L., Tsai, J.Y., Buso, D., et al: ‘OLED equivalent circuit model with temperature coefficient and intrinsic capacitor’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 493501.
    19. 19)
      • 21. Park, J., Kawakami, Y., Park, S.H.: ‘Numerical analysis of multilayer organic light-emitting diodes’, J. Lightwave Technol., 2007, 25, (9), pp. 28282836.
    20. 20)
      • 5. Goswami, V., Kumar, B., Kaushik, B.K., et al: ‘Analysis of static and dynamic performance of organic inverter circuits based on dual and single gate organic thin film transistors’, IET Circuits Devices Syst., 2013, 7, (6), pp. 345351.
    21. 21)
      • 18. Mittal, P., Negi, Y.S., Singh, R.K.: ‘A depth analysis for different structures of organic thin film transistors: modeling of performance limiting issues’, Microelectron. Eng., 2016, 150, pp. 718.
    22. 22)
      • 10. Fan, C.L., Chen, Y.C., Yang, C.C., et al: ‘Novel LTPS-TFT pixel circuit with OLED luminance compensation for 3D AMOLED displays’, J. Disp. Technol., 2016, 12, (5), pp. 425428.
    23. 23)
      • 20. Malliaras, G.G., Scott, J.C.: ‘Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes’, J. Appl. Phys., 1999, 85, (10), pp. 74267432.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0164
Loading

Related content

content/journals/10.1049/iet-cds.2019.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading