http://iet.metastore.ingenta.com
1887

Analytical modelling and parameters extraction of multilayered OLED

Analytical modelling and parameters extraction of multilayered OLED

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This research study investigates electrical performance of the multilayered organic light-emitting diode (OLED) with a focus on the role of charge injection, transport and emission layers. Device parameters; luminescence and current density are extracted using Silvaco ATLAS numerical device simulator and validated through the fabricated experimental results with a minor deviation of 3%. Furthermore, a mathematical model is applied to extract other device parameters such as electric field, charge carrier mobility, concentration and current density. Additionally, the multilayered device architecture is critically analysed through cut line methodology to better comprehend the internal device physics in terms of hole-electron mobility, concentration and their recombination. Subsequently, the performance parameters extracted using analytical model are compared with the results of internal analysis and a close match is observed. These results prove the Poole-Frenkel mobility-dependent behaviour in the OLEDs that varies following electric field. Analyses also highlight high electron and hole concentrations in the vicinity of the emission layer as a reason of high luminescence in the multilayered OLED, directly following the Langevin's theory of recombination in organic semiconductors. These analyses highlight the impact of different layers in the OLEDs and thus open up new horizons to further performance improvement in these devices.

References

    1. 1)
      • 1. Kumar, B., Kaushik, B.K., Negi, Y.S.: ‘Organic thin film transistors: structures, models, materials, fabrication, and applications: a review’, Poly. Rev., 2014, 54, (1), pp. 33111.
    2. 2)
      • 2. Castro-Carranza, A., Estrada, M., Nolasco, J.C., et al: ‘Organic thin-film transistor bias-dependent capacitance compact model in accumulation regime’, IET Circuits Devices Syst., 2012, 6, (2), pp. 130135.
    3. 3)
      • 3. Kumar, B., Kaushik, B.K., Negi, Y.S.: ‘Analysis of electrical parameters of organic thin film transistors based on thickness variation in semi-conducting and dielectric layers’, IET Circuits Devices Syst., 2014, 8, (2), pp. 131140.
    4. 4)
      • 4. Fayez, M., Morsi, K.M., Sabry, M.N.: ‘OTFTs compact models: analysis, comparison, and insights’, IET Circuits Devices Syst., 2017, 11, (5), pp. 409420.
    5. 5)
      • 5. Goswami, V., Kumar, B., Kaushik, B.K., et al: ‘Analysis of static and dynamic performance of organic inverter circuits based on dual and single gate organic thin film transistors’, IET Circuits Devices Syst., 2013, 7, (6), pp. 345351.
    6. 6)
      • 6. Chen, H., Chen, J., Qiu, C., et al: ‘Blue organic light-emitting diode based on 1, 2, 3, 4, 5-pentaphenyl-1-(8-phenyl-1, 7-octadiynyl) silole’, IEEE J. Sel. Top. Quantum Electron., 2004, 10, (1), pp. 1015.
    7. 7)
      • 7. Chen, Y., Chen, J., Ma, D., et al: ‘High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer’, Appl. Phys. Lett., 2011, 98, (24), p. 114.
    8. 8)
      • 8. Yun, C., Cho, H., Koh, T.W., et al: ‘Doping-free inverted top-emitting organic light-emitting diodes with high power efficiency and near-ideal emission characteristics’, IEEE Trans. Electron Devices, 2012, 59, (1), pp. 159166.
    9. 9)
      • 9. Negi, S., Mittal, P., Kumar, B.: ‘Impact of different layers on performance of OLED’, Microsyst. Technol., 2018, 24, (12), pp. 49814989.
    10. 10)
      • 10. Fan, C.L., Chen, Y.C., Yang, C.C., et al: ‘Novel LTPS-TFT pixel circuit with OLED luminance compensation for 3D AMOLED displays’, J. Disp. Technol., 2016, 12, (5), pp. 425428.
    11. 11)
      • 11. Kim, J.Y., Kim, D., Kim, D.H., et al: ‘Analysis of out-coupling mechanism in organic light-emitting diodes’, IEEE Photonics Technol. Lett., 2014, 26, (9), pp. 896899.
    12. 12)
      • 12. Krujatz, F., Hild, O., Fehse, K., et al: ‘Exploiting the potential of OLED-based photo-organic sensors for biotechnological applications’, Chem. Sci. J., 2016, 7, p.134.
    13. 13)
      • 13. Haigh, P.A., Ghassemlooy, Z., Papakonstantinou, I., et al: ‘2.7 Mb/s with a 93 kHz white organic light emitting diode and real time ANN equalizer’, IEEE Photonics Technol. Lett., 2013, 25, (17), pp. 16871690.
    14. 14)
      • 14. Patil, D.S., Gautam, D.K.: ‘Computer analysis and optimization of physical and material parameters of the blue laser diode’, Opt. Commun., 2002, 201, (4–6), pp. 413423.
    15. 15)
      • 15. Yang, H., Zhao, Y., Hou, J., et al: ‘Organic light-emitting devices with double-block layer’, Microelectron. J., 2006, 37, (11), pp. 12711275.
    16. 16)
      • 16. Mittal, P., Negi, Y.S., Singh, R.K.: ‘An analytical approach for parameter extraction in linear and saturation regions of top and bottom contact organic transistors’, J. Comput. Electron., 2015, 14, (3), pp. 828843.
    17. 17)
      • 17. Sonawane, U.S., Samuel, E.P., Kasar, C.K., et al: ‘Nanosimulation of electron confinement in cerium doped zinc oxide nanowire structure for light emitting devices’, Optik, 2016, 127, (12), pp. 49374940.
    18. 18)
      • 18. Mittal, P., Negi, Y.S., Singh, R.K.: ‘A depth analysis for different structures of organic thin film transistors: modeling of performance limiting issues’, Microelectron. Eng., 2016, 150, pp. 718.
    19. 19)
      • 19. Patil, D.S., Gautam, D.K.: ‘Analysis of effect of temperature on ZnSe based blue laser diode characteristics at 507 nm wavelength’, Phys. B, 2004, 344, (1–4), pp. 140146.
    20. 20)
      • 20. Malliaras, G.G., Scott, J.C.: ‘Numerical simulations of the electrical characteristics and the efficiencies of single-layer organic light emitting diodes’, J. Appl. Phys., 1999, 85, (10), pp. 74267432.
    21. 21)
      • 21. Park, J., Kawakami, Y., Park, S.H.: ‘Numerical analysis of multilayer organic light-emitting diodes’, J. Lightwave Technol., 2007, 25, (9), pp. 28282836.
    22. 22)
      • 22. Buso, D., Bhosle, S., Liu, Y., et al: ‘OLED electrical equivalent device for driver topology design’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 14591468.
    23. 23)
      • 23. Lin, R.L., Tsai, J.Y., Buso, D., et al: ‘OLED equivalent circuit model with temperature coefficient and intrinsic capacitor’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 493501.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0164
Loading

Related content

content/journals/10.1049/iet-cds.2019.0164
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address