access icon free Fabrication and investigation of zinc oxide nanoflowers-based piezoelectric nanogenerator

The versatility of the use of zinc oxide in numerous applications has attracted the attention of various academic research workers and industries. Various micro and nanostructures of zinc oxide have been explored owing to different growth methods and applications. In this research work, zinc oxide nanoflower is grown on a glass substrate using un-complicated and a low-cost hydrothermal method. Hydrolysis of zinc nitrate is done in a basic medium. The main criteria followed for such a structural growth is the control of the pH of the solution precursor. The grown structure is further characterised by using the scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Synthesised zinc oxide nanostructure is utilised as a piezoelectric material in a nanogenerator. The maximum power per unit area of 2.6 mW/m2 is achieved. Simulation results of the similar zinc oxide nanostructure is also presented, which substantiate the experimental results.

Inspec keywords: semiconductor growth; X-ray chemical analysis; X-ray diffraction; pH; nanofabrication; piezoelectric materials; wide band gap semiconductors; liquid phase deposition; nanogenerators; nanostructured materials; scanning electron microscopy; II-VI semiconductors; piezoelectric transducers; zinc compounds

Other keywords: glass substrate; energy dispersive spectroscopy; microstructures; zinc nitrate; ZnO; academic research workers; zinc oxide nanoflower-based piezoelectric nanogenerator; hydrolysis; grown structure; synthesised zinc oxide nanostructure; growth methods; low-cost hydrothermal method; solution precursor; structural growth; piezoelectric material; scanning electron microscopy; pH; X-ray diffraction

Subjects: Piezoelectricity and electrostriction; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Deposition from liquid phases; Low-dimensional structures: growth, structure and nonelectronic properties; Nanofabrication using thin film deposition methods; Energy harvesting; Electrochemistry and electrophoresis; Deposition from liquid phases (melts and solutions); II-VI and III-V semiconductors; Nanometre-scale semiconductor fabrication technology; Piezoelectric and ferroelectric materials; Electromagnetic radiation spectrometry (chemical analysis); Piezoelectric devices; Energy harvesting

References

    1. 1)
      • 23. Fan, J., Li, T., Heng, H.: ‘Hydrothermal growth of ZnO nanoflowers and their photocatalyst application’, Bull. Mater. Sci., 2016, 39, (1), pp. 1926.
    2. 2)
      • 9. Paino, M.M., Goncalves, F.J., Souza, F.L., et al: ‘Zinc oxide flower like nanostructures that exhibit enhanced toxicology effects in cancer cells’, ACS Appl. Mater. Interfaces, 2016, 8, (48), pp. 3269932705.
    3. 3)
      • 34. Sharma, P.K., Jilavi, M.H., Varadan, V.K., et al: ‘Influence of initial pH on the particle size and fluorescence properties of the nano scale Eu(III) doped yttria’, J. Phys. Chem. Solids, 2002, 63, pp. 171177.
    4. 4)
      • 21. Krishnakumar, T., Jayaprakash, R., Pinna, N., et al: ‘Microwave assisted synthesis and characterization of flower shaped zinc oxide nanostructures’, Mater. Lett., 2009, 63, (2), pp. 242245.
    5. 5)
      • 3. Radzimska, A.K., Jesionowoski, T.: ‘Zinc oxide from synthesis to applications: a review’, Materials., 2014, 7, (4), pp. 28332881.
    6. 6)
      • 10. Paino, M.M., Goncalves, F.J., Souza, F.L., et al: ‘In vitro cytotoxicity effects of zinc oxide flower like nanostructure in normal and cancer cells’. 11th Int. Conf. and Expo on Nanoscience and Molecular Nanotechnology, Rome, Italy, 2016, vol. 7, p. 5.
    7. 7)
      • 17. Sharma, S., Dalal, V.S., Mahajan, V.: ‘Synthesis of zinc oxide nano flower for photovoltaic applications’, Mater. Today Proce., 2016, 3, (6), pp. 13591362.
    8. 8)
      • 32. Wahab, R., Kim, Y.S., Shin, H.S.: ‘Synthesis, characterization and effect of pH variation on zinc oxide nanostructures’, Mater. Trans., 2009, 50, (8), pp. 20922097.
    9. 9)
      • 35. Sirohi, J., Chopra, I.: ‘Fundamental understanding of piezoelectric strain sensors’, J. Intell. Mater. Syst. Struct., 2000, 11, pp. 246257.
    10. 10)
      • 36. Liu, J., Fei, P., Zhou, J., et al: ‘Towards high output power nanogenerator’, Appl. Phys. Lett., 2008, 92, (17), pp. 173105173107.
    11. 11)
      • 16. Umetsu, M., Mizuta, M., Tsumoto, K., et al: ‘Bioassisted room-temperature immobilization and mineralization of zinc oxide- the structured ordering of ZnO nanoparticles into a flower type morphology’, Adv. Mater., 2015, 17, (21), pp. 25712575.
    12. 12)
      • 11. Xie, L., Xu, Y., Cao, X.: ‘Hydrogen peroxide biosensor based on haemoglobin immobilized at graphene, flower like zinc oxide and gold nanoprticles nanocomposite modifies glassy carbon electrode’, Colloids Surf B, Biointerfaces, 2013, 107, pp. 245250.
    13. 13)
      • 19. Subraman, K., Sathish, M.: ‘Facile synthesis of ZnO nanoflowers/RGO nanocomposite using zinc hexacyanoferrate for supercapacitor applications’, Mater. Sci., 2018, 236, pp. 424427.
    14. 14)
      • 12. Tajik, S., Beitollahi, H., Mohammad, R.A.: ‘A novel dopamine electrochemical sensor based on La3+/ZnO nanoflower modified graphite screen printed electrode’, J. Electrochem. Sci. Eng., 2019, 9, (3), pp. 187195.
    15. 15)
      • 14. Shinde, S.S., Shinde, P.S., Bhosale, C.H., et al: ‘Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation’, J. Photochem. Photobiol. B, Biol., 2011, 104, (3), pp. 425433.
    16. 16)
      • 30. Gill, M., Manzaneque, T., Garcia, J.H., et al: ‘Multimodal characterization of high-Q piezoelectric micro-tuning forks’, IET Circuit Devices Syst., 2013, 7, (6), pp. 361367.
    17. 17)
      • 31. Wang, Z.L.: ‘Towards self-powered nanosystems: from nanogenerators to nanopiezotronics’, Adv. Funct. Mater., 2008, 18, (22), pp. 35533567.
    18. 18)
      • 24. Fan, J., Li, T., Heng, H.: ‘Hydrothermal growth and optical properties of ZnO nanoflowers’, Mater. Res. Express, 2014, 1, (4), p. 045024.
    19. 19)
      • 7. Kumar, K.M., Mandal, B.K., Naidu, E.A., et al: ‘Synthesis and characterisation of flower shaped zinc oxide nanostructure and its antimicrobial activity’, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2013, 104, pp. 171174.
    20. 20)
      • 5. Rihtnesberg, D.B., Almqvist, S., Wamg, Q.: ‘ZnO nanorods/nanoflowers and their applications’. Proc. of 4th IEEE Int. Nanoelectronics Conf., INEC 2011, Tao-Yuan, 21 June 2011.
    21. 21)
      • 1. Wang, Z.L.: ‘Zinc oxide nanostructure growth, properties and applications’, J. Phys., Condens. Matter., 2004, 16, (25), pp. 829858.
    22. 22)
      • 25. Yang, R.T., Yu, H.Y., Song, M.L., et al: ‘Flower like zinc oxide nanorods cluster grown on spherical cellulose nanocrystal via simple chemical precipitation method’, Cellulose, 2016, 23, (3), pp. 18711884.
    23. 23)
      • 22. Shang, T.M., Sun, J.H., Zhou, Q.F., et al: ‘Controlled synthesis of various morphologies of nanostructures zinc oxide flower, nanoplate and urchin’, Cryst. Res. Technol., 2017, 42, (10), pp. 10021006.
    24. 24)
      • 15. Wahab, R., Hwang, I.H., Kim, Y.S., et al: ‘Photocatalytic activity of zinc oxide micro-flower synthesized via solution method’, Chem. Eng. J., 2011, 168, (1), pp. 359366.
    25. 25)
      • 13. Rezaei, R., Foroughi, M.M., Beitollahi, H., et al: ‘Synthesis of lanthum-doped ZnO nanoflowers supported on graphite screen printed electrode for selective and sensitive detection of hydrochlorothiazide’, Int. J. Electrochem. Sci., 2019, 14, pp. 20382048.
    26. 26)
      • 26. AzizNur, S.A., Nishiyama, T., Rusli, N.I., et al: ‘Seedless growth of zinc oxide flower shaped structures on multilayer grapheme by electrochemical deposition’, Nanoscale Res. Lett., 2014, 9, p. 337.
    27. 27)
      • 4. Wang, Z.L.: ‘Nanostructure of zinc oxide’, Mater. Today, 2004, 7, (6), pp. 2633.
    28. 28)
      • 28. Raghavendran, S., Umapathy, M., Karlmarx, R.: ‘Supercapacitor charging from piezoelectric energy harvesters using multi-input buck-boost converter’, IET Circuit Syst. Devices, 2018, 12, (6), pp. 746752.
    29. 29)
      • 29. Raghavendran, S., Umapathy, M., Gandhi, U., et al: ‘Bridgeless active rectifier for piezoelectric energy harvesting’, IET Circuit Syst. Devices, 2019, 13, (7), pp. 10781085.
    30. 30)
      • 6. Krithika, G., Saraswathy, R., Muralidhar, M., et al: ‘Zinc oxide nanoparticles – synthesis, characterization and antibacterial activity’, J. Nanosci. Nanotechnol., 2017, 7, (8), pp. 52095216.
    31. 31)
      • 20. Wang, W.W., Zhu, Y.J.: ‘Shape controlled synthesis of zinc oxide by microwave heating using an imidazolium salt’, Inorg. Chem. Commun., 2014, 7, (9), pp. 10031005.
    32. 32)
      • 18. Mavundla, S.E., Malgas, G.F., Motaung, D.E., et al: ‘Synthesis of flower-like zinc oxide and polyaniline with worm-like morphology and their applications in hybrid solar cells’, Cryst. Res. Technol., 2012, 47, (5), pp. 553560.
    33. 33)
      • 33. Sun, Y., Wang, L., Yu, X., et al: ‘Facile synthesis of flower-like 3D ZnO superstructures via solution route’, CrystEngComm, 2012, 14, (9), pp. 31993204.
    34. 34)
      • 2. Fan, Z., Lu, J.G.: ‘Zinc oxide nanostructures: synthesis and properties’, J. Nanosci. Nanotechnol., 2005, 5, (10), pp. 15611573.
    35. 35)
      • 8. Amna, T.: ‘Shape-controlled synthesis of three-dimensional zinc oxide nanoflowers for disinfection of food pathogens’, J. Biosci., 2018, 73, (7–8), pp. 297301.
    36. 36)
      • 27. Ozturk, S., Kilinc, N., Tasaltin, N., et al: ‘Fabrication of ZnO nanowires and nanorods’, Physica E, 2012, 44, pp. 10621065.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0138
Loading

Related content

content/journals/10.1049/iet-cds.2019.0138
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading