access icon free Optical MEMS accelerometer sensor relying on a micro-ring resonator and an elliptical disk

Here, a novel optical micro-electro-mechanical systems (MEMS) accelerometer sensor based on a micro-ring resonator and an elliptical disk is proposed. The designed optical MEMS accelerometer is then analysed to obtain its functional characteristics. The proposed optical MEMS sensor presents an optical sensitivity of 0.0025 nm/g, a mechanical sensitivity of 1.56 nm/g, a linear measurement range of ±22 g, a first resonance frequency of 13.02 kHz, and a footprint of 34 μm × 50 μm. Furthermore, the achieved functional characteristics of the proposed accelerometer are compared to several recent contributions in the related field. According to this comparison study, the present optical MEMS accelerometer can be a suitable device for many applications ranging from consumer electronics to inertial measurement units.

Inspec keywords: micro-optics; microsensors; accelerometers; micromechanical devices

Other keywords: optical sensitivity; optical MEMS sensor; microring resonator; optical microelectro-mechanical systems; elliptical disk; optical MEMS accelerometer sensor; inertial measurement units; resonance frequency; frequency 13.02 kHz; mechanical sensitivity

Subjects: Velocity, acceleration and rotation measurement; Micro-optical devices and technology; MEMS and NEMS device technology; Micro-optical devices and technology; Microsensors and nanosensors; Micromechanical and nanomechanical devices and systems; Velocity, acceleration and rotation measurement

References

    1. 1)
      • 21. Sheikhaleh, A., Abedi, K., Jafari, K.: ‘An optical MEMS accelerometer based on a two-dimensional photonic crystal add-drop filter’, J. Lightwave Technol., 2017, 35, (14), pp. 30293034.
    2. 2)
      • 12. Crosnier, G., Sanchez, D., Bouchoule, S., et al: ‘Hybrid indium phosphide-on-silicon nanolaser diode’, Nat. Photonics, 2017, 11, (5), pp. 297300.
    3. 3)
      • 4. Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., et al: ‘Silicon microring resonators’, Laser Photonics Rev., 2012, 6, (1), pp. 4773.
    4. 4)
      • 9. Wu, J.-W., Sarma, A.K.: ‘Ultrafast all-optical XOR logic gate based on a symmetrical Mach-Zehnder interferometer employing SOI waveguides’, Opt. Commun., 2010, 283, (14), pp. 29142917.
    5. 5)
      • 10. Sah, P., Das, B.K.: ‘Integrated optical rectangular-edge filter devices in SOI’, J. Lightwave Technol., 2017, 35, (2), pp. 128135.
    6. 6)
      • 14. Errando-Herranz, C., Niklaus, F., Stemme, G., et al: ‘Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter’, Opt. Lett., 2015, 40, (15), pp. 35563559.
    7. 7)
      • 30. Jafari, K., Juillard, J., Roger, M.: ‘Convergence analysis of an online approach to parameter estimation problems based on binary observations’, Automatica, 2012, 48, (11), pp. 28372842.
    8. 8)
      • 1. Stojanović, V., Ram, R.J., Popović, M., et al: ‘Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [invited]’, Opt. Express, 2018, 26, (10), pp. 1310613121.
    9. 9)
      • 5. Khalil, K., Sabry, Y.M., Hassan, K., et al: ‘In-line optical MEMS phase modulator and application in ring laser frequency modulation’, IEEE J. Quantum Electron., 2016, 52, (8), pp. 18.
    10. 10)
      • 27. Luo, G., Lee, C., Cheng, C., et al: ‘CMOS-MEMS Fabry-Perot optical interference device with tunable resonant cavity’. 2013 Transducers & Eurosensors XXVII: The 17th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, 2013, pp. 26002603.
    11. 11)
      • 28. Hao, L., Gang, Z., Carley, L.R., et al: ‘A post-CMOS micromachined lateral accelerometer’, J. Microelectromech. Syst., 2002, 11, (3), pp. 188195.
    12. 12)
      • 20. Trigona, C., Ando, B., Baglio, S.: ‘Design, fabrication, and characterization of BESOI-accelerometer exploiting photonic bandgap materials’, IEEE Trans. Instrum. Meas., 2014, 63, (3), pp. 702710.
    13. 13)
      • 25. Sheikhaleh, A., Abedi, K., Jafari, K.: ‘A proposal for an optical MEMS accelerometer relied on wavelength modulation with one dimensional photonic crystal’, J. Lightwave Technol., 2016, 34, (22), pp. 52445249.
    14. 14)
      • 22. Krause, A.G., Winger, M., Blasius, T.D., et al: ‘A high-resolution microchip optomechanical accelerometer’, Nat. Photonics, 2012, 6, p.768.
    15. 15)
      • 6. Azzam, S.I., Obayya, S.S.A.: ‘Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform’, Opt. Lett., 2015, 40, (6), pp. 10611064.
    16. 16)
      • 15. Lipson, A., Yeatman, E.M.: ‘A 1-D photonic band gap tunable optical filter in (110) silicon’, J. Microelectromech. Syst., 2007, 16, (3), pp. 521527.
    17. 17)
      • 29. Jafari, K.: ‘A parameter estimation approach based on binary measurements using maximum likelihood analysis - application to MEMS’, Int. J. Control, Autom. Syst., 2017, 15, (2), pp. 716721.
    18. 18)
      • 17. Dong, X., Yang, S., Zhu, J., et al: ‘Method of measuring the mismatch of parasitic capacitance in MEMS accelerometer based on regulating electrostatic stiffness’, Micromachines. (Basel), 2018, 9, (3), p. 128.
    19. 19)
      • 18. Davies, E., George, D.S., Gower, M.C., et al: ‘MEMS fabry–pérot optical accelerometer employing mechanical amplification via a V-beam structure’, Sens. Actuators, A, 2014, 215, pp. 2229.
    20. 20)
      • 7. Xiong, Y., Xu, D., Schmid, J.H., et al: ‘High extinction ratio and broadband silicon Te-pass polarizer using subwavelength grating index engineering’, IEEE Photonics J., 2015, 7, (5), pp. 17.
    21. 21)
      • 11. Omran, H., Sabry, Y.M., Sadek, M., et al: ‘Deeply-etched optical MEMS tunable filter for swept laser source applications’, IEEE Photonics Technol. Lett., 2014, 26, (1), pp. 3739.
    22. 22)
      • 24. Sheikhaleh, A., Abedi, K., Jafari, K., et al: ‘Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal’, Appl. Opt., 2016, 55, (32), pp. 89938999.
    23. 23)
      • 8. Majumder, A., Shen, B., Polson, R., et al: ‘Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials’, Opt. Express, 2017, 25, (17), pp. 1972119731.
    24. 24)
      • 26. Yang, Z., Peroulis, D.: ‘A 20–40 Ghz tunable MEMS bandpass filter with enhanced stability by gold-vanadium micro-corrugated diaphragms’. 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, CA, 2016, pp. 13.
    25. 25)
      • 3. Bogaerts, W., Baets, R., Dumon, P., et al: ‘Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology’, J. Lightwave Technol., 2005, 23, (1), p. 401.
    26. 26)
      • 19. Lu, Q., Bai, J., Wang, K., et al: ‘Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer’, J. Microelectromech. Syst., 2017, 26, (4), pp. 859869.
    27. 27)
      • 23. Ahmadian, M., Jafari, K., Sharifi, M.J.: ‘Novel graphene-based optical MEMS accelerometer dependent on intensity modulation’, ETRI J., 2018, 40, (6), pp. 794801.
    28. 28)
      • 13. Zhao, X., Tsai, J., Cai, H., et al: ‘A nano-opto-mechanical pressure sensor via ring resonator’, Opt. Express, 2012, 20, (8), pp. 85358542.
    29. 29)
      • 16. Tan, S.S., Liu, C.Y., Yeh, L.K., et al: ‘A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability’, J. Micromech. Microeng., 2011, 21, (3), p. 035005.
    30. 30)
      • 2. Orcutt, J.S., Moss, B., Sun, C., et al: ‘Open foundry platform for high-performance electronic-photonic integration’, Opt. Express, 2012, 20, (11), pp. 1222212232.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0029
Loading

Related content

content/journals/10.1049/iet-cds.2019.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading